101 research outputs found

    The J-triplet Cooper pairing with magnetic dipolar interactions

    Get PDF
    Recently, cold atomic Fermi gases with the large magnetic dipolar interaction have been laser cooled down to quantum degeneracy. Different from electric-dipoles which are classic vectors, atomic magnetic dipoles are quantum-mechanical matrix operators proportional to the hyperfine-spin of atoms, thus provide rich opportunities to investigate exotic many-body physics. Furthermore, unlike anisotropic electric dipolar gases, unpolarized magnetic dipolar systems are isotropic under simultaneous spin-orbit rotation. These features give rise to a robust mechanism for a novel pairing symmetry: orbital p-wave (L=1) spin triplet (S=1) pairing with total angular momentum of the Cooper pair J=1. This pairing is markedly different from both the 3^3He-B phase in which J=0 and the 3^3He-AA phase in which JJ is not conserved. It is also different from the p-wave pairing in the single-component electric dipolar systems in which the spin degree of freedom is frozen

    Biaxial nematic phases in ultracold dipolar Fermi gases

    Full text link
    Ultracold dipolar Fermi gases represent relatively unexplored, strongly correlated systems arising from long-range and anisotropic interactions. We demonstrate the possibility of a spontaneous symmetry breaking biaxial phase in these systems, which may be realized in, e.g., gases of ultracold polar molecules or strongly magnetic atoms. This biaxial nematic phase is manifest in a spontaneous distortion of the Fermi surface perpendicular to the axis of polarization. We describe these dipolar interaction induced phases using Landau Fermi liquid theory.Comment: 4 pages, 1 figure; clarifying comments added to tex

    Selective scattering between Floquet-Bloch and Volkov states in a topological insulator

    Get PDF
    The coherent optical manipulation of solids is emerging as a promising way to engineer novel quantum states of matter. The strong time periodic potential of intense laser light can be used to generate hybrid photon-electron states. Interaction of light with Bloch states leads to Floquet-Bloch states which are essential in realizing new photo-induced quantum phases. Similarly, dressing of free electron states near the surface of a solid generates Volkov states which are used to study non-linear optics in atoms and semiconductors. The interaction of these two dynamic states with each other remains an open experimental problem. Here we use Time and Angle Resolved Photoemission Spectroscopy (Tr-ARPES) to selectively study the transition between these two states on the surface of the topological insulator Bi2Se3. We find that the coupling between the two strongly depends on the electron momentum, providing a route to enhance or inhibit it. Moreover, by controlling the light polarization we can negate Volkov states in order to generate pure Floquet-Bloch states. This work establishes a systematic path for the coherent manipulation of solids via light-matter interaction.Comment: 21 pages, 6 figures, final version to appear in Nature Physic

    Condensed Matter Theory of Dipolar Quantum Gases

    Full text link
    Recent experimental breakthroughs in trapping, cooling and controlling ultracold gases of polar molecules, magnetic and Rydberg atoms have paved the way toward the investigation of highly tunable quantum systems, where anisotropic, long-range dipolar interactions play a prominent role at the many-body level. In this article we review recent theoretical studies concerning the physics of such systems. Starting from a general discussion on interaction design techniques and microscopic Hamiltonians, we provide a summary of recent work focused on many-body properties of dipolar systems, including: weakly interacting Bose gases, weakly interacting Fermi gases, multilayer systems, strongly interacting dipolar gases and dipolar gases in 1D and quasi-1D geometries. Within each of these topics, purely dipolar effects and connections with experimental realizations are emphasized.Comment: Review article; submitted 09/06/2011. 158 pages, 52 figures. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Chemical Reviews, copyright American Chemical Society after peer review. To access the final edited and published work, a link will be provided soo

    Fluctuating Stripes in Strongly Correlated Electron Systems and the Nematic-Smectic Quantum Phase Transition

    Full text link
    We discuss the quantum phase transition between a quantum nematic metallic state to an electron metallic smectic state in terms of an order-parameter theory coupled to fermionic quasiparticles. Both commensurate and incommensurate smectic (or stripe) cases are studied. Close to the quantum critical point (QCP), the spectrum of fluctuations of the nematic phase has low-energy ``fluctuating stripes''. We study the quantum critical behavior and find evidence that, contrary to the classical case, the gauge-type of coupling between the nematic and smectic is irrelevant at this QCP. The collective modes of the electron smectic (or stripe) phase are also investigated. The effects of the low-energy bosonic modes on the fermionic quasiparticles are studied perturbatively, for both a model with full rotational symmetry and for a system with an underlying lattice, which has a discrete point group symmetry. We find that at the nematic-smectic critical point, due to the critical smectic fluctuations, the dynamics of the fermionic quasiparticles near several points on the Fermi surface, around which it is reconstructed, are not governed by a Landau Fermi liquid theory. On the other hand, the quasiparticles in the smectic phase exhibit Fermi liquid behavior. We also present a detailed analysis of the dynamical susceptibilities in the electron nematic phase close to this QCP (the fluctuating stripe regime) and in the electronic smectic phase.Comment: 34 pages, 5 figure. An error in the calculation of fermion self-energy correction in the smectic phase was corrected, with updated Eq. (7.5) and Eq. (E3) and Table

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    Automatic Analysis of Composite Physical Signals Using Non-Negative Factorization and Information Criterion

    Get PDF
    In time-resolved spectroscopy, composite signal sequences representing energy transfer in fluorescence materials are measured, and the physical characteristics of the materials are analyzed. Each signal sequence is represented by a sum of non-negative signal components, which are expressed by model functions. For analyzing the physical characteristics of a measured signal sequence, the parameters of the model functions are estimated. Furthermore, in order to quantitatively analyze real measurement data and to reduce the risk of improper decisions, it is necessary to obtain the statistical characteristics from several sequences rather than just a single sequence. In the present paper, we propose an automatic method by which to analyze composite signals using non-negative factorization and an information criterion. The proposed method decomposes the composite signal sequences using non-negative factorization subjected to parametric base functions. The number of components (i.e., rank) is also estimated using Akaike's information criterion. Experiments using simulated and real data reveal that the proposed method automatically estimates the acceptable ranks and parameters

    Ligand-Directed Self-Assembly of Organic-Semiconductor/Quantum-Dot Blend Films Enables Efficient Triplet Exciton-Photon Conversion

    Get PDF
    Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic–organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet–triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic–inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications
    • …
    corecore