611 research outputs found

    Study of qqqccˉqqqc\bar{c} five quark system with three kinds of quark-quark hyperfine interaction

    Full text link
    The low-lying energy spectra of five quark systems uudccˉuudc\bar{c} (I=1/2, S=0) and udsccˉudsc\bar{c} (I=0, S=-1) are investigated with three kinds of schematic interactions: the chromomagnetic interaction, the flavor-spin dependent interaction and the instanton-induced interaction. In all the three models, the lowest five quark state (uudccˉuudc\bar{c} or udsccˉudsc\bar{c}) has an orbital angular momentum L=0 and the spin-parity JP=1/2J^{P}=1/2^{-}; the mass of the lowest udsccˉudsc\bar{c} state is heavier than the lowest uudccˉuudc\bar{c} state

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches Δνp\Delta\nu_{p} and Δν˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is \sim 6.8 ×106\times 10^{-6} Hz, \sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant \sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc

    Genome sequence and effectorome of Moniliophthora perniciosa and Moniliophthora roreri subpopulations

    Get PDF
    Background: The hemibiotrophic pathogens Moniliophthora perniciosa (witches' broom disease) and Moniliophthora roreri (frosty pod rot disease) are among the most important pathogens of cacao. Moniliophthora perniciosa has a broad host range and infects a variety of meristematic tissues in cacao plants, whereas M. roreri infects only pods of Theobroma and Herrania genera. Comparative pathogenomics of these fungi is essential to understand Moniliophthora infection strategies, therefore the detection and in silico functional characterization of effector candidates are important steps to gain insight on their pathogenicity. Results: Candidate secreted effector proteins repertoire were predicted using the genomes of five representative isolates of M. perniciosa subpopulations (three from cacao and two from solanaceous hosts), and one representative isolate of M. roreri from Peru. Many putative effectors candidates were identified in M. perniciosa: 157 and 134 in cacao isolates from Bahia, Brazil; 109 in cacao isolate from Ecuador, 92 and 80 in wild solanaceous isolates from Minas Gerais (Lobeira) and Bahia (Caiçara), Brazil; respectively. Moniliophthora roreri showed the highest number of effector candidates, a total of 243. A set of eight core effectors were shared among all Moniliophthora isolates, while others were shared either between the wild solanaceous isolates or among cacao isolates. Mostly, candidate effectors of M. perniciosa were shared among the isolates, whereas in M. roreri nearly 50% were exclusive to the specie. In addition, a large number of cell wall-degrading enzymes characteristic of hemibiotrophic fungi were found. From these, we highlighted the proteins involved in cell wall modification, an enzymatic arsenal that allows the plant pathogens to inhabit environments with oxidative stress, which promotes degradation of plant compounds and facilitates infection. Conclusions: The present work reports six genomes and provides a database of the putative effectorome of Moniliophthora, a first step towards the understanding of the functional basis of fungal pathogenicity. © 2018 The Author(s).This work was done in the frame of the International Consortium in Advanced Biology (CIBA; https://www.ciba-network.org). The authors thank the Molecular Plant Pathology Laboratory and the Plant Pathology Laboratory at INIAP personnel for their assistance in obtaining the DNAs, Dr Carmen Suarez Capello for her kind assistance in Ecuador, and the Núcleo de Biologia Computacional e Gestão de Informações Biotecnológicas - UESC (NBCGIB), and Copenhague University for providing bioinformatics facility. Data sets were processed in sagarana HPC cluster, CPAD-ICB-UFMG. The authors would also like to thank Dr. Claudia Fortes Ferreira (Embrapa CNPMF, Brazil) and Dr. Raul Renné Valle (CEPLAC/CEPEC, Brazil) for English language revision. We are also grateful to Ivanna Michelle Meraz Pérez for helping translating an early version of this manuscript and to the anonymous reviewers who provided helpful comments to our work. KPG, FM and CPP were supported by research fellowship Pq-1 from CNPq. National Council for Scientific Development (CNPq) n° 311759/2014–9. CSB acknowledges FAPESB (Foundation for Research Support of the State of Bahia) for supporting her with a research assistantship during her Master’s Programme

    Scaling violations: Connections between elastic and inelastic hadron scattering in a geometrical approach

    Get PDF
    Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and pˉp\bar{p}p scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in pppp and pˉp\bar{p}p collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.Comment: 16 pages, aps-revtex, 11 figure

    Thimet oligopeptidase (EC 3.4.24.15) key functions suggested by knockout mice phenotype characterization

    Get PDF
    Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1(-/-)) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1(-/-) exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1(-/-) and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1(-/-) mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1(-/-) mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1(-/-) mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Beyond the Libet clock: modality variants for agency measurements

    Get PDF
    The Sense of Agency (SoA) refers to our capability to control our own actions and influence the world around us. Recent research in HCI has been exploring SoA to provide users an instinctive sense of “I did that” as opposed to “the system did that”. However, current agency measurements are limited. The Intentional Binding (IB) paradigm provides an implicit measure of the SoA. However, it is constrained by requiring high visual attention to a “Libet clock” onscreen. In this paper, we extend the timing stimulus through auditory and tactile cues. Our results demonstrate that audio timing through voice commands and haptic timing through tactile cues on the hand are alternative techniques to measure the SoA using the IB paradigm. They both address limitations of the traditional method (e.g., lack of engagement and visual demand). We discuss how our results can be applied to measure SoA in tasks involving different interactive scenarios common in HCI

    European survey on laboratory preparedness, response and diagnostic capacity for crimean-congo haemorrhagic fever, 2012

    Get PDF
    Crimean-Congo haemorrhagic fever (CCHF) is an infectious viral disease that has (re-)emerged in the last decade in south-eastern Europe, and there is a risk for further geographical expansion to western Europe. Here we report the results of a survey covering 28 countries, conducted in 2012 among the member laboratories of the European Network for Diagnostics of 'Imported' Viral Diseases (ENIVD) to assess laboratory preparedness and response capacities for CCHF. The answers of 31 laboratories of the European region regarding CCHF case definition, training necessity, biosafety, quality assurance and diagnostic tests are presented. In addition, we identifi
    corecore