23,444 research outputs found
On the heating of source of the Orion KL hot core
We present images of the J=10-9 rotational lines of HC3N in the vibrationally
excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images
show that the spatial distribution and the size emission from the 1v7 and 1v5
levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and
peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is
unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear
indication that the HC is composed of condensations with very different
temperatures (170 K for the 1v7 peak and K for the 1v5 peak). The
temperature derived from the 1v7 and 1v5 lines increases with the projected
distance to the suspected main heating source I. Projection effects along the
line of sight could explain the temperature gradient as produced by source I.
However, the large luminosity required for source I, >5 10^5 Lsolar, to explain
the 1v5 line suggests that external heating by this source may not dominate the
heating of the HC. Simple model calculations of the vibrationally excited
emission indicate that the HC can be internally heated by a source with a
luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south
of source I). We also report the first detection of high-velocity gas from
vibrationally excited HC3N emission. Based on excitation arguments we conclude
that the main heating source is also driving the molecular outflow. We
speculate that all the data presented in this letter and the IR images are
consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter
Living healthier for longer: comparative effects of three heart-healthy behaviors on life expectancy with and without cardiovascular disease
Background: Non-smoking, having a normal weight and increased levels of physical activity are perhaps the three key factors for preventing cardiovascular disease (CVD). However, the relative effects of these factors on healthy longevity have not been well described. We aimed to calculate and compare the effects of non-smoking, normal weight and physical activity in middle-aged populations on life expectancy with and without cardiovascular disease.
Methods: Using multi-state life tables and data from the Framingham Heart Study (n = 4634) we calculated the effects of three heart healthy behaviours among populations aged 50 years and over on life expectancy with and without cardiovascular disease. For the life table calculations, we used hazard ratios for 3 transitions (No CVD to CVD, no CVD to death, and CVD to death) by health behaviour category, and adjusted for age, sex, and potential confounders.
Results: High levels of physical activity, never smoking (men), and normal weight were each associated with 20-40% lower risks of developing CVD as compared to low physical activity, current smoking and obesity, respectively. Never smoking and high levels of physical activity reduced the risks of dying in those with and without a history of CVD, but normal weight did not. Never-smoking was associated with the largest gains in total life expectancy (4.3 years, men, 4.1 years, women) and CVD-free life expectancy (3.8 and 3.4 years, respectively). High levels of physical activity and normal weight were associated with lesser gains in total life expectancy (3.5 years, men and 3.4 years, women, and 1.3 years, men and 1.0 year women, respectively), and slightly lesser gains in CVD-free life expectancy (3.0 years, men and 3.1 years, women, and 3.1 years men and 2.9 years women, respectively). Normal weight was the only behaviour associated with a reduction in the number of years lived with CVD (1.8 years, men and 1.9 years, women).
Conclusions: Achieving high levels of physical activity, normal weight, and never smoking, are effective ways to prevent cardiovascular disease and to extend total life expectancy and the number of years lived free of CVD. Increasing the prevalence of normal weight could further reduce the time spent with CVD in the population
Local Interstellar Medium Kinematics towards the Southern Coalsack and Chamaeleon-Musca dark clouds
The results of a spectroscopic programme aiming to investigate the kinematics
of the local interstellar medium components towards the Southern Coalsack and
Chamaeleon-Musca dark clouds are presented. The analysis is based upon
high-resolution (R ~ 60,000) spectra of the insterstellar NaI D absorption
lines towards 63 B-type stars (d < 500 pc) selected to cover these clouds and
the connecting area defined by the Galactic coordinates: 308 > l > 294 and -22
< b < 5. The radial velocities, column densities, velocity dispersions, colour
excess and photometric distances to the stars are used to understand the
kinematics and distribution of the interstellar cloud components. The analysis
indicates that the interstellar gas is distributed in two extended sheet-like
structures permeating the whole area, one at d < 60 pc and another around
120-150 pc from the Sun. The dust and gas feature around 120-150 pc seem to be
part of an extended large scale feature of similar kinematic properties,
supposedly identified with the interaction zone of the Local and Loop I
bubbles.Comment: 19 pages, accepted for MNRA
Application of Fractal Dimension for Quantifying Noise Texture in Computed Tomography Images
Purpose
Evaluation of noise texture information in CT images is important for assessing image quality. Noise texture is often quantified by the noise power spectrum (NPS), which requires numerous image realizations to estimate. This study evaluated fractal dimension for quantifying noise texture as a scalar metric that can potentially be estimated using one image realization. Methods
The American College of Radiology CT accreditation phantom (ACR) was scanned on a clinical scanner (Discovery CT750, GE Healthcare) at 120 kV and 25 and 90 mAs. Images were reconstructed using filtered back projection (FBP/ASIR 0%) with varying reconstruction kernels: Soft, Standard, Detail, Chest, Lung, Bone, and Edge. For each kernel, images were also reconstructed using ASIR 50% and ASIR 100% iterative reconstruction (IR) methods. Fractal dimension was estimated using the differential boxâcounting algorithm applied to images of the uniform section of ACR phantom. The twoâdimensional Noise Power Spectrum (NPS) and oneâdimensionalâradially averaged NPS were estimated using established techniques. By changing the radiation dose, the effect of noise magnitude on fractal dimension was evaluated. The Spearman correlation between the fractal dimension and the frequency of the NPS peak was calculated. The number of images required to reliably estimate fractal dimension was determined and compared to the number of images required to estimate the NPSâpeak frequency. The effect of Region of Interest (ROI) size on fractal dimension estimation was evaluated. Feasibility of estimating fractal dimension in an anthropomorphic phantom and clinical image was also investigated, with the resulting fractal dimension compared to that estimated within the uniform section of the ACR phantom. Results
Fractal dimension was strongly correlated with the frequency of the peak of the radially averaged NPS curve, having a Spearman rankâorder coefficient of 0.98 (Pâvalue \u3c 0.01) for ASIR 0%. The mean fractal dimension at ASIR 0% was 2.49 (Soft), 2.51 (Standard), 2.52 (Detail), 2.57 (Chest), 2.61 (Lung), 2.66 (Bone), and 2.7 (Edge). A reduction in fractal dimension was observed with increasing ASIR levels for all investigated reconstruction kernels. Fractal dimension was found to be independent of noise magnitude. Fractal dimension was successfully estimated from four ROIs of size 64 Ă 64 pixels or one ROI of 128 Ă 128 pixels. Fractal dimension was found to be sensitive to nonânoise structures in the image, such as ring artifacts and anatomical structure. Fractal dimension estimated within a uniform region of an anthropomorphic phantom and clinical head image matched that estimated within the ACR phantom for filtered back projection reconstruction. Conclusions
Fractal dimension correlated with the NPSâpeak frequency and was independent of noise magnitude, suggesting that the scalar metric of fractal dimension can be used to quantify the change in noise texture across reconstruction approaches. Results demonstrated that fractal dimension can be estimated from four, 64 Ă 64âpixel ROIs or one 128 Ă 128 ROI within a head CT image, which may make it amenable for quantifying noise texture within clinical images
Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates
We present a theoretical analysis of the selective darkening method for
implementing quantum controlled-NOT (CNOT) gates. This method, which we
recently proposed and demonstrated, consists of driving two
transversely-coupled quantum bits (qubits) with a driving field that is
resonant with one of the two qubits. For specific relative amplitudes and
phases of the driving field felt by the two qubits, one of the two transitions
in the degenerate pair is darkened, or in other words, becomes forbidden by
effective selection rules. At these driving conditions, the evolution of the
two-qubit state realizes a CNOT gate. The gate speed is found to be limited
only by the coupling energy J, which is the fundamental speed limit for any
entangling gate. Numerical simulations show that at gate speeds corresponding
to 0.48J and 0.07J, the gate fidelity is 99% and 99.99%, respectively, and
increases further for lower gate speeds. In addition, the effect of
higher-lying energy levels and weak anharmonicity is studied, as well as the
scalability of the method to systems of multiple qubits. We conclude that in
all these respects this method is competitive with existing schemes for
creating entanglement, with the added advantages of being applicable for qubits
operating at fixed frequencies (either by design or for exploitation of
coherence sweet-spots) and having the simplicity of microwave-only operation.Comment: 25 pages, 5 figure
Crystal-to-crystal transition of ultrasoft colloids under shear
Ultrasoft colloids typically do not spontaneously crystallize, but rather
vitrify, at high concentrations. Combining in-situ rheo-SANS experiments and
numerical simulations we show that shear facilitates crystallization of
colloidal star polymers in the vicinity of their glass transition. With
increasing shear rate well beyond rheological yielding, a transition is found
from an initial bcc-dominated structure to an fcc-dominated one. This
crystal-to-crystal transition is not accompanied by intermediate melting but
occurs via a sudden reorganization of the crystal structure. Our results
provide a new avenue to tailor colloidal crystallization and crystal-to-crystal
transition at molecular level by coupling softness and shear
- âŠ