4,140 research outputs found

    Simple parametrization for the ground-state energy of the infinite Hubbard chain incorporating Mott physics, spin-dependent phenomena and spatial inhomogeneity

    Full text link
    Simple analytical parametrizations for the ground-state energy of the one-dimensional repulsive Hubbard model are developed. The charge-dependence of the energy is parametrized using exact results extracted from the Bethe-Ansatz. The resulting parametrization is shown to be in better agreement with highly precise data obtained from fully numerical solution of the Bethe-Ansatz equations than previous expressions [Lima et al., Phys. Rev. Lett. 90, 146402 (2003)]. Unlike these earlier proposals, the present parametrization correctly predicts a positive Mott gap at half filling for any U>0. The construction is extended to spin-dependent phenomena by parametrizing the magnetization-dependence of the ground-state energy using further exact results and numerical benchmarking. Lastly, the parametrizations developed for the spatially uniform model are extended by means of a simple local-density-type approximation to spatially inhomogeneous models, e.g., in the presence of impurities, external fields or trapping potentials. Results are shown to be in excellent agreement with independent many-body calculations, at a fraction of the computational cost.Comment: New Journal of Physics, accepte

    Universal and deterministic manipulation of the quantum state of harmonic oscillators: a route to unitary gates for Fock State qubits

    Full text link
    We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two-by-two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic and state-independent manipulation of the harmonic oscillator quantum state.Comment: 4 pages, 4 figure

    Hubbard model as an approximation to the entanglement in nanostructures

    Get PDF
    We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction. We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between interaction and potential shape in the quantum-well system dictates the position and size of the entanglement maxima and the agreement with the theoretical limits. Finally, we calculate the spatial entanglement for the quantum-well system and compare it to its average single-site entanglement

    Effect of spatial inhomogeneity on the mapping between strongly interacting fermions and weakly interacting spins

    Full text link
    A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.Comment: 7 pages, 6 figure
    • …
    corecore