5,151 research outputs found

    Quantum statistical correlations in thermal field theories: boundary effective theory

    Full text link
    We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field Ï•c\phi_c, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field Ï•c\phi_c, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.Comment: 13 pages, 1 figur

    Uniform semiclassical approximation in quantum statistical mechanics

    Full text link
    We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential.Comment: 5 pages, 1 figure, Latex. Contribution to the Proceedings of the XXI Brazilian National Meeting on Particles and Fields (Sao Lourenco, October 23-27, 2000

    The Role of Fermions in Bubble Nucleation

    Get PDF
    We present a study of the role of fermions in the decay of metastable states of a scalar field via bubble nucleation. We analyze both one and three-dimensional systems by using a gradient expansion for the calculation of the fermionic determinant. The results of the one-dimensional case are compared to the exact results of previous work.Comment: 15 pages, revtex, 9 figure

    Hydration-induced anisotropic spin fluctuations in Na_{x}CoO_{2}\cdot1.3H_{2}O superconductor

    Full text link
    We report ^{59}Co NMR studies in single crystals of cobalt oxide superconductor Na_{0.42}CoO_{2}\cdot1.3H_{2}O (T_c=4.25K) and its parent compound Na_{0.42}CoO_{2}. We find that both the magnitude and the temperature (T) dependence of the Knight shifts are identical in the two compounds above T_c. The spin-lattice relaxation rate (1/T_1) is also identical above T_0 \sim60 K for both compounds. Below T_0, the unhydrated sample is found to be a non-correlated metal that well conforms to Fermi liquid theory, while spin fluctuations develop in the superconductor. These results indicate that water intercalation does not change the density of states but its primary role is to bring about spin fluctuations. Our result shows that, in the hydrated superconducting compound, the in-plane spin fluctuation around finite wave vector is much stronger than that along the c-axis, which indicates that the spin correlation is quasi-two-dimensional.Comment: 4 pages, 5 figure

    Effective potential in the BET formalism

    Full text link
    We calculate the one-loop effective potential at finite temperature for a system of massless scalar fields with quartic interaction λϕ4\lambda\phi^4 in the framework of the boundary effective theory (BET) formalism. The calculation relies on the solution of the classical equation of motion for the field, and Gaussian fluctuations around it. Our result is non-perturbative and differs from the standard one-loop effective potential for field values larger than T/λT/\sqrt{\lambda}.Comment: 10 pages, 3 figure

    Pressure of massless hot scalar theory in the boundary effective theory framework

    Full text link
    We use the boundary effective theory (BET) approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially non-perturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with non-trivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.Comment: 10 pages, 4 figure

    EXPERIMENTAL INVESTIGATION OF A PARAFFIN BASED HYBRID ROCKET

    Get PDF
    Hybrid rockets are known to be simpler, safer, environmentally friend, and, more importantly, cheaper than most of the technologies for propulsion devices used today. Hybrid rockets can be applied as the propulsion system in satellites launch vehicles, micro-satellites and tactical missiles. This paper deals with combustion of ultra-high molecular weight polyethylene (UHMWPE) and paraffin as the solid fuels burning with gaseous oxygen (GOX) as well as N O as the oxidizer in lab scale hybrid rocket motors. A test 2 stand was built to carry out the experiments. The main objectives were to investigate the ignition of the solid fuels, burning performance and regression rates for different operating conditions. With paraffin-based fuel the hybrid motor had the regression rate enhanced two to three folds compared to the UHMWPE, as reported in the literature. The overall performance of the motor, with paraffin as the fuel, is comparable to other technologies. Paraffin-based hybrid rockets can, then, be a safer and cheaper alternative to satellite launch vehicles for the Brazilian space program
    • …
    corecore