4,727 research outputs found

    Depth Estimation via Affinity Learned with Convolutional Spatial Propagation Network

    Full text link
    Depth estimation from a single image is a fundamental problem in computer vision. In this paper, we propose a simple yet effective convolutional spatial propagation network (CSPN) to learn the affinity matrix for depth prediction. Specifically, we adopt an efficient linear propagation model, where the propagation is performed with a manner of recurrent convolutional operation, and the affinity among neighboring pixels is learned through a deep convolutional neural network (CNN). We apply the designed CSPN to two depth estimation tasks given a single image: (1) To refine the depth output from state-of-the-art (SOTA) existing methods; and (2) to convert sparse depth samples to a dense depth map by embedding the depth samples within the propagation procedure. The second task is inspired by the availability of LIDARs that provides sparse but accurate depth measurements. We experimented the proposed CSPN over two popular benchmarks for depth estimation, i.e. NYU v2 and KITTI, where we show that our proposed approach improves in not only quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5 times faster) than prior SOTA methods.Comment: 14 pages, 8 figures, ECCV 201

    Joint relay scheduling, channel access, and power allocation for green cognitive radio communications

    Get PDF
    PublishedJournal Article© 1983-2012 IEEE. The capacity of cognitive radio (CR) systems can be enhanced significantly by deploying relay nodes to exploit the spatial diversity. However, the inevitable imperfect sensing in CR has vital effects on the policy of relay selection, channel access, and power allocation that play pivotal roles in the system capacity. The increase in transmission power can improve the system capacity, but results in high energy consumption, which incurs the increase of carbon emission and network operational cost. Most of the existing schemes for CR systems have not jointly considered the imperfect sensing scenario and the tradeoff between the system capacity and energy consumption. To fill in this gap, this paper proposes an energy-aware centralized relay selection scheme that takes into account the relay selection, channel access, and power allocation jointly in CR with imperfect sensing. Specifically, the CR system is formulated as a partially observable Markov decision process (POMDP) to achieve the goal of balancing the system capacity and energy consumption as well as maximizing the system reward. The optimal policy for relay selection, channel access, and power allocation is then derived by virtue of a dynamic programming approach. A dimension reduction strategy is further applied to reduce its high computation complexity. Extensive simulation experiments and results are presented and analysed to demonstrate the significant performance improvement compared to the existing schemes. The performance results show that the received reward increases more than 50% and the network lifetime increases more than 35%, but the system capacity is reduced less than 6% only.This work was supported by the National Natural Science Foundation of China under Grants 61201219, 61171111, 61472150, and 61173045 and in part by the Fundamental Research Funds for the Central Universities under Grant 2013QN122

    Capacitance switching in SiO 2 thin film embedded with Ge nanocrystals caused by ultraviolet illumination

    Get PDF
    A structure of indium tin oxide/ SiO 2 embedded with Ge nanocrystal (nc-Ge) /p-Si substrate was fabricated. The capacitance of the structure can be switched to a high-capacitance or low-capacitance state by an ultraviolet (UV) illumination. The increase (or decrease) in the capacitance is accompanied with the decrease (or increase) in the oxide resistance. The capacitance switching is explained in terms of the UV illumination-induced charging and discharging in the nc-Ge. © 2009 American Institute of Physics.published_or_final_versio

    Effective Activation of Strong C−Cl Bonds for Highly Selective Photosynthesis of Bibenzyl via Homo-Coupling

    Get PDF
    Carbon-carbon (C−C) coupling of organic halides has been successfully achieved in homogeneous catalysis, while the limitation, e.g., the dependence on rare noble metals, complexity of the metal-ligand catalylst and the poor catalyst stability and recyclability, needs to be tackled for a green process. The past few years have witnessed heterogeneous photocatalysis as a green and novel method for organic synthesis processes. However, the study on C−C coupling of chloride substrates is rare due to the extremely high bond energy of C−Cl bond (327 kJ mol−1). Here, we report a robust heterogeneous photocatalyst (Cu/ZnO) to drive the homo-coupling of benzyl chloride with high efficiency, which achieves an unprecedented high selectivity of bibenzyl (93 %) and yield rate of 92 % at room temperature. Moreover, this photocatalytic process has been validated for C−C coupling of 10 benzylic chlorides all with high yields. In addition, the excellent stability has been observed for 8 cycles of reactions. With detailed characterization and DFT calculation, the high selectivity is attributed to the enhanced adsorption of reactants, stabilization of intermediates (benzyl radicals) for the selective coupling by the Cu loading and the moderate oxidation ability of the ZnO support, besides the promoted charge separation and transfer by Cu species

    A new insight into the coupler curves of the RCCC four-bar linkage

    Get PDF
    The final publication is available at link.springer.comBased on the condition for four points to lie on the unit sphere, derived using Distance Geometry, a new mathematical formulation for the coupler curves of the RCCC linkage is presented. The relevance of this formulation is not only its simplicity, but the elegant way in which we can obtain the derivative of any variable with respect to any other, and the simple way in which intervals of monotonicity can be detected. All these results are compactly expressed in terms of Gramians and, as a consequence, they have a direct geometric meaning contrarily to what happens with previous approaches based on kinematic loop equations.Peer ReviewedPostprint (author's final draft

    Semi-parametric estimation of the Wilshire creep life prediction model: an application to 2.25Cr-1Mo steel

    Get PDF
    The Wilshire equation is a recent addition to the literature on safe life prediction. While the effect of temperature on creep life is reasonably understood, the effect of stress isn’t. The Wilshire equation deals with this by partitioning over sub ranges of stress, but this approximation can lead to poor life time predictions. This paper introduces a semi-parametric procedure that allows the data itself to identify the stress relationship. When applied to 2.25Cr-1Mo steel it was found that the stress relationship is non-linear, and this semi-parametric version of the Wilshire model had better predictive performance compared to any partitioned Wilshire model. This approach contains a limit to valid extrapolation and the isothermal predictions for creep life have a more realistic pattern of behaviour

    The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

    Full text link
    A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma

    Quenching and reactivation of electroluminescence by charge trapping and detrapping in Si-implanted silicon nitride thin film

    Get PDF
    In this brief, quenching of electroluminescence (EL) from Si-implanted silicon nitride (SNR) thin film under a forward bias has been observed. The quenching phenomenon is shown to be due to charge trapping in the defect states involved in the radiative recombination. The composite EL bands have different quenching rates, causing a change in the EL spectrum shape by the EL quenching. Release of the trapped charges by a low-temperature annealing at 120 °C or an application of a reverse gate bias can partially recover the quenched EL both in the intensity and spectrum shape. The quenching phenomenon poses a serious challenge to the application of Si-implanted SNR thin films in light-emitting devices. © 2009 IEEE.published_or_final_versio

    Evolution of electroluminescence from multiple Si-implanted silicon nitride films with thermal annealing

    Get PDF
    Influence of thermal annealing on electroluminescence (EL) from multiple-Si-implanted silicon nitride films has been investigated. A reduced injection current and an enhanced EL intensity have been obtained simultaneously by increasing the annealing temperature, which results in a higher EL quantum efficiency. In addition, four emission bands are identified, and their peak energies, intensities, and full widths at half maxima are found to change with annealing temperature. A model is proposed to illustrate the carrier transport, the mechanisms of the four emission bands, and the evolution of the EL bands with annealing as well. The two major bands and the minor ultraviolet band are explained in terms of the recombination of the injected electrons in either the silicon dangling-bond (≡ Si 0) states or the nitride conduction band with the injected holes in either the band tail states above the nitride valence band or the valence band itself, while the minor near infrared band is attributed to the Si nanocrystals formed in the thin film. © 2009 American Institute of Physics.published_or_final_versio
    • …
    corecore