31 research outputs found

    Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mushroom polysaccharides have traditionally been used for the prevention and treatment of a multitude of disorders like infectious illnesses, cancers and various autoimmune diseases. Crude mushroom extracts have been tested without detailed chemical analyses of its polysaccharide content. For the present study we decided to chemically determine the carbohydrate composition of semi-purified extracts from 2 closely related and well known basidiomycete species, i.e. <it>Agaricus bisporus </it>and <it>A. brasiliensis </it>and to study their effects on the innate immune system, in particular on the <it>in vitro </it>induction of pro-inflammatory cytokines, using THP-1 cells.</p> <p>Methods</p> <p>Mushroom polysaccharide extracts were prepared by hot water extraction and precipitation with ethanol. Their composition was analyzed by GC-MS and NMR spectroscopy. PMA activated THP-1 cells were treated with the extracts under different conditions and the production of pro-inflammatory cytokines was evaluated by qPCR.</p> <p>Results</p> <p>Semi-purified polysaccharide extracts of <it>A. bisporus </it>and <it>A. brasiliensis </it>(= <it>blazei</it>) were found to contain (1→6),(1→4)-linked α-glucan, (1→6)-linked β-glucan, and mannogalactan. Their proportions were determined by integration of <sup>1</sup>H-NMR signs, and were considerably different for the two species. <it>A. brasiliensis </it>showed a higher content of β-glucan, while <it>A. bisporus </it>presented mannogalactan as its main polysaccharide. The extracts induced a comparable increase of transcription of the pro-inflammatory cytokine genes IL-1β and TNF-α as well as of COX-2 in PMA differentiated THP-1 cells. Pro-inflammatory effects of bacterial LPS in this assay could be reduced significantly by the simultaneous addition of <it>A. brasiliensis </it>extract.</p> <p>Conclusions</p> <p>The polysaccharide preparations from the closely related species <it>A. bisporus </it>and <it>A. brasiliensis </it>show major differences in composition: <it>A. bisporus </it>shows high mannogalactan content whereas <it>A. brasiliensis </it>has mostly β-glucan. Semi-purified polysaccharide extracts from both <it>Agaricus </it>species stimulated the production of pro-inflammatory cytokines and enzymes, while the polysaccharide extract of <it>A. brasiliensis </it>reduced synthesis of these cytokines induced by LPS, suggesting programmable immunomodulation.</p

    Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (<it>Pleurotus ostreatus</it>) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.</p> <p>Results</p> <p>OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE<sub>2</sub>) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS <it>in vivo</it>. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.</p> <p>Conclusions</p> <p>Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.</p
    corecore