6,463 research outputs found

    Absence of Embedded Mass Shells: Cerenkov Radiation and Quantum Friction

    Full text link
    We show that, in a model where a non-relativistic particle is coupled to a quantized relativistic scalar Bose field, the embedded mass shell of the particle dissolves in the continuum when the interaction is turned on, provided the coupling constant is sufficiently small. More precisely, under the assumption that the fiber eigenvectors corresponding to the putative mass shell are differentiable as functions of the total momentum of the system, we show that a mass shell could exist only at a strictly positive distance from the unperturbed embedded mass shell near the boundary of the energy-momentum spectrum.Comment: Revised version: a remark added at the end of Section

    Magnetism and the Weiss Exchange Field - A Theoretical Analysis Inspired by Recent Experiments

    Full text link
    The huge spin precession frequency observed in recent experiments with spin-polarized beams of hot electrons shot through magnetized films is interpreted as being caused by Zeeman coupling of the electron spins to the so-called Weiss exchange field in the film. A "Stern-Gerlach experiment" for electrons moving through an inhomogeneous exchange field is proposed. The microscopic origin of exchange interactions and of large mean exchange fields, leading to different types of magnetic order, is elucidated. A microscopic derivation of the equations of motion of the Weiss exchange field is presented. Novel proofs of the existence of phase transitions in quantum XY-models and antiferromagnets, based on an analysis of the statistical distribution of the exchange field, are outlined.Comment: 36 pages, 3 figure

    Long range order for lattice dipoles

    Full text link
    We consider a system of classical Heisenberg spins on a cubic lattice in dimensions three or more, interacting via the dipole-dipole interaction. We prove that at low enough temperature the system displays orientational long range order, as expected by spin wave theory. The proof is based on reflection positivity methods. In particular, we demonstrate a previously unproven conjecture on the dispersion relation of the spin waves, first proposed by Froehlich and Spencer, which allows one to apply infrared bounds for estimating the long distance behavior of the spin-spin correlation functions.Comment: 9 page

    The Chern-Simons Action in Non-Commutative Geometry

    Get PDF
    A general definition of Chern-Simons actions in non-commutative geometry is proposed and illustrated in several examples. These are based on ``space-times'' which are products of even-dimensional, Riemannian spin manifolds by a discrete (two-point) set. If the *algebras of operators describing the non-commutative spaces are generated by functions over such ``space-times'' with values in certain Clifford algebras the Chern-Simons actions turn out to be the actions of topological gravity on the even-dimensional spin manifolds. By contrasting the space of field configurations in these examples in an appropriate manner one is able to extract dynamical actions from Chern-Simons actions.Comment: 40 page

    KMS, etc

    Full text link
    A general form of the ``Wick rotation'', starting from imaginary-time Green functions of quantum-mechanical systems in thermal equilibrium at positive temperature, is established. Extending work of H. Araki, the role of the KMS condition and of an associated anti-unitary symmetry operation, the ``modular conjugation'', in constructing analytic continuations of Green functions from real- to imaginary times, and back, is clarified. The relationship between the KMS condition for the vacuum with respect to Lorentz boosts, on one hand, and the spin-statistics connection and the PCT theorem, on the other hand, in local, relativistic quantum field theory is recalled. General results on the reconstruction of local quantum theories in various non-trivial gravitational backgrounds from ``Euclidian amplitudes'' are presented. In particular, a general form of the KMS condition is proposed and applied, e.g., to the Unruh- and the Hawking effects. This paper is dedicated to Huzihiro Araki on the occasion of his seventieth birthday, with admiration, affection and best wishes.Comment: 56 pages, submitted to J. Math. Phy

    Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics

    Get PDF
    A C*-algebra containing the CCR and CAR algebras as its subalgebras and naturally described as the semidirect product of these algebras is discussed. A particular example of this structure is considered as a model for the algebra of asymptotic fields in quantum electrodynamics, in which Gauss' law is respected. The appearence in this algebra of a phase variable related to electromagnetic potential leads to the universal charge quantization. Translationally covariant representations of this algebra with energy-momentum spectrum in the future lightcone are investigated. It is shown that vacuum representations are necessarily nonregular with respect to total electromagnetic field. However, a class of translationally covariant, irreducible representations is constructed excplicitly, which remain as close as possible to the vacuum, but are regular at the same time. The spectrum of energy-momentum fills the whole future lightcone, but there are no vectors with energy-momentum lying on a mass hyperboloid or in the origin.Comment: 42 pages, LaTeX; minor corrections, a reference adde
    • …
    corecore