512 research outputs found

    Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most deaths from ovarian cancer are due to metastases that are resistant to conventional therapies. But the factors that regulate the metastatic process and chemoresistance of ovarian cancer are poorly understood. In the current study, we investigated the aberrant expression of human sperm protein 17 (HSp17) in human epithelial ovarian cancer cells and tried to analyze its influences on the cell behaviors like migration and chemoresistance.</p> <p>Methods</p> <p>Immunohistochemistry and immunocytochemistry were used to identify HSp17 in paraffin embedded ovarian malignant tumor specimens and peritoneal metastatic malignant cells. Then we examined the effect of HSp17 overexpression on the proliferation, migration, and chemoresistance of ovarian cancer cells to carboplatin and cisplatin in a human ovarian carcinoma cell line, HO8910.</p> <p>Results</p> <p>We found that HSp17 was aberrantly expressed in 43% (30/70) of the patients with primary epithelial ovarian carcinomas, and in all of the metastatic cancer cells of ascites from 8 patients. The Sp17 expression was also detected in the metastatic lesions the same as in ovarian lesions. None of the 7 non-epithelial tumors primarily developed in the ovaries was immunopositive for HSp17. Overexpression of HSp17 increased the migration but decreased the chemosensitivity of ovarian carcinoma cells to carboplatin and cisplatin.</p> <p>Conclusion</p> <p>HSp17 is aberrantly expressed in a significant proportion of epithelial ovarian carcinomas. Our results strongly suggest that HSp17 plays a role in metastatic disease and resistance of epithelial ovarian carcinoma to chemotherapy.</p

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p

    Biocleavable Polycationic Micelles as Highly Efficient Gene Delivery Vectors

    Get PDF
    An amphiphilic disulfide-containing polyamidoamine was synthesized by Michael-type polyaddition reaction of piperazine to equimolar N, N′-bis(acryloyl)cystamine with 90% yield. The polycationic micelles (198 nm, 32.5 mV), prepared from the amphiphilic polyamidoamine by dialysis method, can condense foreign plasmid DNA to form nanosized polycationic micelles/DNA polyelectrolyte complexes with positive charges, which transfected 293T cells with high efficiency. Under optimized conditions, the transfection efficiencies of polycationic micelles/DNA complexes are comparable to, or even higher than that of commercially available branched PEI (Mw 25 kDa)

    A Method for the Generation of Ectromelia Virus (ECTV) Recombinants: In Vivo Analysis of ECTV vCD30 Deletion Mutants

    Get PDF
    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo
    corecore