16 research outputs found

    Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month.</p> <p>Methods</p> <p>Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3<sup>+ </sup>cells and their subsets, CD4<sup>+ </sup>and CD8<sup>+</sup>), B lymphocytes (CD19<sup>+</sup>) and natural killer (NK) cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH) and particulate matter < 2.5 micrometer in diameter (PM<sub>2.5</sub>) were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM<sub>2.5 </sub>and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births.</p> <p>Results</p> <p>The adjusted models show significant associations between PAHs or PM<sub>2.5 </sub>during early gestation and increases in CD3<sup>+ </sup>and CD4<sup>+ </sup>lymphocytes percentages and decreases in CD19<sup>+ </sup>and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3<sup>+ </sup>and CD4<sup>+ </sup>fractions and increases in CD19<sup>+ </sup>and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation.</p> <p>Conclusions</p> <p>PAHs and PM<sub>2.5 </sub>in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.</p

    Immunotherapy of pediatric brain tumor patients should include an immunoprevention strategy: a medical hypothesis paper

    Get PDF
    Adults diagnosed with Glioblastoma multiforme (GBM) are frequently faced with a 7% chance of surviving 2 years compared with pediatric patients with GBM who have a 26% survival rate. Our recent screen of possible glioma-associated antigen precursor protein (TAPP) profiles displayed from different types of pediatric brain tumors showed that pediatric patients contained a subset of the tumor antigens displayed by adult GBM patients. Adult GBM possess at least 27 tumor antigens that can potentially stimulate T cell immune responses, suggesting that these tumors are quite antigenic. In contrast, pediatric brain tumors only expressed nine tumor antigens with mRNA levels that were equivalent to those displayed by adult GBM. These tumor-associated antigens could be used as possible targets of therapeutic immunization for pediatric brain cancer patients. Children have developing immune systems that peak at puberty. An immune response mounted by these pediatric patients might account for their extended life spans, even though the pediatric brain tumors express far fewer total tumor-associated antigens. Here we present a hypothesis that pediatric brain tumor patients might be the best patients to show that immunotherapy can be used to successfully treat established cancers. We speculate that immunotherapy should include a panel of tumor antigens that might prevent the out-growth of more malignant tumor cells and thereby prevent the brain tumor relapse. Thus, pediatric brain tumor patients might provide an opportunity to prove the concept of immunoprevention
    corecore