5 research outputs found

    Dietary supplementation with hydrolyzed yeast and its effect on the performance, intestinal microbiota, and immune response of weaned piglets.

    Get PDF
    The objective of this study was to evaluate the effects of autolyzed yeast on performance, cecal microbiota, and leukogram of weaned piglets. A total of 96 piglets of commercial line weaned at 21-day-old were used. The experimental design was a randomized block design with four treatments (diets containing 0.0%, 0.3%, 0.6%, and 0.9% autolyzed yeast), eight replicates, and three animals per pen in order to evaluate daily weight gain, daily feed intake, and feed conversion in periods of 0 to 15, 0 to 26, and 0 to 36 days. Quadratic effects of autolyzed yeast inclusion were observed on the feed conversion from 0 to 15 days, on daily weight gain from 0 to 15 days, 0 to 26 days and, 0 to 36 days, indicating an autolyzed yeast optimal inclusion level between 0.4% and 0.5%. No effect from autolyzed yeast addition was observed on piglet daily feed intake, cecal microbiota, and leukogram; however, i.m. application of E. coli lipopolysaccharide reduced the values of total leukocytes and their fractions (neutrophils, eosinophils, lymphocytes, monocytes, and rods). Therefore, autolyzed yeast when provided at levels between 0.4% and 0.5% improved weaned piglets’ performance.info:eu-repo/semantics/publishedVersio

    Biodiversity and Phylogenetic Relationships of Novel Bacteriocinogenic Strains Isolated from Animal’s Droppings at the Zoological Garden of Lille, France

    No full text
    International audienceThis study aimed at exploring droppings of animals living in captivity in the zoological garden (Zoo) of Lille (France), as novel sources of bacteriocinogenic strains. A collection of 295 bacterial isolates was constituted from droppings of capybara, alpaca, muntjac, zebra, tapir, rhinoceros, binturong, armadillo, saki monkey and cockatoo. Of 295 isolates, 51 exhibited antagonism against a panel of pathogenic target bacteria like Escherichia coli MC4100, Clostridium perfringens DSM 756 and Salmonella enterica subsp. enterica Newport ATCC6962. Remarkably, within this collection, only 2 Gram-negative bacilli exhibited activity against E. coli MC4100 strain used as target organism. Then, the 16S rDNA sequencing revealed these thereafter cited species, Pediococcus pentosaceus, Weissella cibaria, E. coli, Lactobacillus reuteri, Enterococcus hirae and Enterococcus faecalis. Characterization of this antagonism has revealed 11 strains able producing extracellular protease-sensitive inhibitory compounds. These strains included E. coli ICVB442 and ICVB443, Ent. faecalis ICVB472, ICVB474, ICVB477 ICVB479, ICVB481, ICVB497 and ICVB501 and Ped. pentosaceus ICVB491 and ICVB492. The genomes of the 5 most promising bacteriocinogenic strains were sequenced and analysed with Bagel4 software. Afterwards, this bioinformatics analysis permitted to locate genes encoding bacteriocins like colicin Y (E. coli), enterocin 1071A, enterocin 107 B (Ent. faecalis) and penocin A (Ped. pentosaceus), associating the above-mentioned antibacterial activity of proteinaceous nature to possible production of bacteriocins. All these results enabled us to select different bacteriocinogenic strains for a further characterization in terms of beneficial traits
    corecore