469 research outputs found
Black hole-neutron star mergers for 10 solar mass black holes
General relativistic simulations of black hole-neutron star mergers have
currently been limited to low-mass black holes (less than 7 solar mass), even
though population synthesis models indicate that a majority of mergers might
involve more massive black holes (10 solar mass or more). We present the first
general relativistic simulations of black hole-neutron star mergers with 10
solar mass black holes. For massive black holes, the tidal forces acting on the
neutron star are usually too weak to disrupt the star before it reaches the
innermost stable circular orbit of the black hole. Varying the spin of the
black hole in the range a/M = 0.5-0.9, we find that mergers result in the
disruption of the star and the formation of a massive accretion disk only for
large spins a/M>0.7-0.9. From these results, we obtain updated constraints on
the ability of BHNS mergers to be the progenitors of short gamma-ray bursts as
a function of the mass and spin of the black hole. We also discuss the
dependence of the gravitational wave signal on the black hole parameters, and
provide waveforms and spectra from simulations beginning 7-8 orbits before
merger.Comment: 11 pages, 11 figures - Updated to match published versio
Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method
We present a new numerical scheme to solve the initial value problem for
black hole-neutron star binaries. This method takes advantage of the
flexibility and fast convergence of a multidomain spectral representation of
the initial data to construct high-accuracy solutions at a relatively low
computational cost. We provide convergence tests of the method for both
isolated neutron stars and irrotational binaries. In the second case, we show
that we can resolve the small inconsistencies that are part of the
quasi-equilibrium formulation, and that these inconsistencies are significantly
smaller than observed in previous works. The possibility of generating a wide
variety of initial data is also demonstrated through two new configurations
inspired by results from binary black holes. First, we show that choosing a
modified Kerr-Schild conformal metric instead of a flat conformal metric allows
for the construction of quasi-equilibrium binaries with a spinning black hole.
Second, we construct binaries in low-eccentricity orbits, which are a better
approximation to astrophysical binaries than quasi-equilibrium systems.Comment: 19 pages, 11 figures, Modified to match final PRD versio
Black hole-neutron star mergers: effects of the orientation of the black hole spin
The spin of black holes in black hole-neutron star (BHNS) binaries can have a
strong influence on the merger dynamics and the postmerger state; a wide
variety of spin magnitudes and orientations are expected to occur in nature. In
this paper, we report the first simulations in full general relativity of BHNS
mergers with misaligned black hole spin. We vary the spin magnitude from a/m=0
to a/m=0.9 for aligned cases, and we vary the misalignment angle from 0 to 80
degrees for a/m=0.5. We restrict our study to 3:1 mass ratio systems and use a
simple Gamma-law equation of state. We find that the misalignment angle has a
strong effect on the mass of the postmerger accretion disk, but only for angles
greater than ~ 40 degrees. Although the disk mass varies significantly with
spin magnitude and misalignment angle, we find that all disks have very similar
lifetimes ~ 100ms. Their thermal and rotational profiles are also very similar.
For a misaligned merger, the disk is tilted with respect to the final black
hole's spin axis. This will cause the disk to precess, but on a timescale
longer than the accretion time. In all cases, we find promising setups for
gamma-ray burst production: the disks are hot, thick, and hyperaccreting, and a
baryon-clear region exists above the black hole.Comment: 15 pages, 13 figure
Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations
Binary neutron star mergers are promising sources of gravitational waves for
ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by
these mergers may also be the main source of r-process elements in the
Universe, while radioactive decays in the ejecta can power bright
electromagnetic post-merger signals. Neutrino-matter interactions play a
critical role in the evolution of the composition of the ejected material,
which significantly impacts the outcome of nucleosynthesis and the properties
of the associated electromagnetic signal. In this work, we present a simulation
of a binary neutron star merger using an improved method for estimating the
average neutrino energies in our energy-integrated neutrino transport scheme.
These energy estimates are obtained by evolving the neutrino number density in
addition to the neutrino energy and flux densities. We show that significant
changes are observed in the composition of the polar ejecta when comparing our
new results with earlier simulations in which the neutrino spectrum was assumed
to be the same everywhere in optically thin regions. In particular, we find
that material ejected in the polar regions is less neutron rich than previously
estimated. Our new estimates of the composition of the polar ejecta make it
more likely that the color and timescale of the electromagnetic signal depend
on the orientation of the binary with respect to an observer's line-of-sight.
These results also indicate that important observable properties of neutron
star mergers are sensitive to the neutrino energy spectrum, and may need to be
studied through simulations including a more accurate, energy-dependent
neutrino transport scheme.Comment: 19p, 17 figures, Accepted by Phys.Rev.
Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime
Simulations of neutron star-black hole (NSBH) binaries generally consider
black holes with masses in the range , where we expect to find
most stellar mass black holes. The existence of lower mass black holes,
however, cannot be theoretically ruled out. Low-mass black holes in binary
systems with a neutron star companion could mimic neutron star-neutron (NSNS)
binaries, as they power similar gravitational wave (GW) and electromagnetic
(EM) signals. To understand the differences and similarities between NSNS
mergers and low-mass NSBH mergers, numerical simulations are required. Here, we
perform a set of simulations of low-mass NSBH mergers, including systems
compatible with GW170817. Our simulations use a composition and temperature
dependent equation of state (DD2) and approximate neutrino transport, but no
magnetic fields. We find that low-mass NSBH mergers produce remnant disks
significantly less massive than previously expected, and consistent with the
post-merger outflow mass inferred from GW170817 for moderately asymmetric mass
ratio. The dynamical ejecta produced by systems compatible with GW170817 is
negligible except if the mass ratio and black hole spin are at the edge of the
allowed parameter space. That dynamical ejecta is cold, neutron-rich, and
surprisingly slow for ejecta produced during the tidal disruption of a neutron
star : . We also find that the final mass of the remnant
black hole is consistent with existing analytical predictions, while the final
spin of that black hole is noticeably larger than expected -- up to for our equal mass case
Initial data for black hole-neutron star binaries, with rotating stars
The coalescence of a neutron star with a black hole is a primary science
target of ground-based gravitational wave detectors. Constraining or measuring
the neutron star spin directly from gravitational wave observations requires
knowledge of the dependence of the emission properties of these systems on the
neutron star spin. This paper lays foundations for this task, by developing a
numerical method to construct initial data for black hole--neutron star
binaries with arbitrary spin on the neutron star. We demonstrate the robustness
of the code by constructing initial-data sets in large regions of the parameter
space. In addition to varying the neutron star spin-magnitude and
spin-direction, we also explore neutron star compactness, mass-ratio, black
hole spin, and black hole spin-direction. Specifically, we are able to
construct initial data sets with neutron stars spinning near centrifugal
break-up, and with black hole spins as large as .Comment: 25 pages, 12 figure
Exploring Outliers in Crowdsourced Ranking for QoE
Outlier detection is a crucial part of robust evaluation for crowdsourceable
assessment of Quality of Experience (QoE) and has attracted much attention in
recent years. In this paper, we propose some simple and fast algorithms for
outlier detection and robust QoE evaluation based on the nonconvex optimization
principle. Several iterative procedures are designed with or without knowing
the number of outliers in samples. Theoretical analysis is given to show that
such procedures can reach statistically good estimates under mild conditions.
Finally, experimental results with simulated and real-world crowdsourcing
datasets show that the proposed algorithms could produce similar performance to
Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up,
without or with a prior knowledge on the sparsity size of outliers,
respectively. Therefore the proposed methodology provides us a set of helpful
tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin
note: text overlap with arXiv:1407.763
Unequal mass binary neutron star simulations with neutrino transport: Ejecta and neutrino emission
We present 12 new simulations of unequal mass neutron star mergers. The simulations are performed with the SpEC code, and utilize nuclear-theory-based equations of state and a two-moment gray neutrino transport scheme with an improved energy estimate based on evolving the number density. We model the neutron stars with the SFHo, LS220, and DD2 equations of state (EOS) and we study the neutrino and matter emission of all 12 models to search for robust trends between binary parameters and emission characteristics. We find that the total mass of the dynamical ejecta exceeds 0.01  M⊙ only for SFHo with weak dependence on the mass ratio across all models. We find that the ejecta have a broad electron fraction (Y_e) distribution (≈0.06–0.48), with mean 0.2. Y_e increases with neutrino irradiation over time, but decreases with increasing binary asymmetry. We also find that the models have ejecta with a broad asymptotic velocity distribution (≈0.05–0.7c). The average velocity lies in the range 0.2c−0.3c and decreases with binary asymmetry. Furthermore, we find that disk mass increases with binary asymmetry and stiffness of the EOS. The Y_e of the disk increases with softness of the EOS. The strongest neutrino emission occurs for the models with soft EOS. For (anti) electron neutrinos we find no significant dependence of the magnitude or angular distribution or neutrino luminosity with mass ratio. The heavier neutrino species have a luminosity dependence on mass ratio but an angular distribution which does not change with mass ratio
Massive disk formation in the tidal disruption of a neutron star by a nearly extremal black hole
Black hole-neutron star (BHNS) binaries are important sources of
gravitational waves for second-generation interferometers, and BHNS mergers are
also a proposed engine for short, hard gamma-ray bursts. The behavior of both
the spacetime (and thus the emitted gravitational waves) and the neutron star
matter in a BHNS merger depend strongly and nonlinearly on the black hole's
spin. While there is a significant possibility that astrophysical black holes
could have spins that are nearly extremal (i.e. near the theoretical maximum),
to date fully relativistic simulations of BHNS binaries have included
black-hole spins only up to =0.9, which corresponds to the black hole
having approximately half as much rotational energy as possible, given the
black hole's mass. In this paper, we present a new simulation of a BHNS binary
with a mass ratio and black-hole spin =0.97, the highest simulated
to date. We find that the black hole's large spin leads to the most massive
accretion disk and the largest tidal tail outflow of any fully relativistic
BHNS simulations to date, even exceeding the results implied by extrapolating
results from simulations with lower black-hole spin. The disk appears to be
remarkably stable. We also find that the high black-hole spin persists until
shortly before the time of merger; afterwards, both merger and accretion spin
down the black hole.Comment: 20 pages, 10 figures, submitted to Classical and Quantum Gravit
- …