402 research outputs found

    The Response of Test Masses to Gravitational Waves in the Coordinates of a Local Observer

    Get PDF
    The response of laser interferometers to gravitational waves has been calculated in a number of different ways, particularly in the transverse-traceless and the local Lorentz gauges. At first sight, it would appear that these calculations lead to different results when the separation between the test masses becomes comparable to the wavelength of the gravitational wave. In this paper this discrepancy is resolved. We describe the response of free test masses to plane gravitational waves in the coordinate frame of a local observer and show that it acquires contributions from three different effects: the displacement of the test masses, the apparent change in the photon velocity, and the variation in the clock speed of the local observer, all of which are induced by the gravitational wave. Only when taken together do these three effects represent a quantity which is translationally invariant. This translationally-invariant quantity is identical to the response function calculated in the transverse-traceless gauge. We thus resolve the well-known discrepancy between the two coordinates systems, and show that the results found in the coordinate frame of a local observer are valid for large separation between the masses.Comment: 25 pages, 3 figures, Latex2

    On the propagation of electromagnetic radiation in the field of a plane gravitational wave

    Get PDF
    The propagation of free electromagnetic radiation in the field of a plane gravitational wave is investigated. A solution is found one order of approximation beyond the limit of geometrical optics in both transverse--traceless (TT) gauge and Fermi Normal Coordinate (FNC) system. The results are applied to the study of polarization perturbations. Two experimental schemes are investigated in order to verify the possibility to observe these perturbations, but it is found that the effects are exceedingly small.Comment: 13 pages; revtex; accepted for publication in Class. Quantum Gra

    Gravitational Radiation from Triple Star Systems

    Get PDF
    We have studied the main features of the gravitational radiation generated by an astrophysical system constituted of three compact objects attracting one another (only via gravitational interaction) in such a manner that stable orbits do exist. We have limited our analysis to systems that can be treated with perturbative methods. We show the profile of the gravitational waves emitted by such systems. These results can be useful within the framework of the new gravitational astronomy which will be made feasible by means of the new generation of gravitational detectors such as LISA in a no longer far future.Comment: 10 pages plus 9 postscript figures; revtex; accepted for publication in Int. J. Mod. Phys.

    Is it possible to detect gravitational waves with atom interferometers?

    Get PDF
    We investigate the possibility to use atom interferometers to detect gravitational waves. We discuss the interaction of gravitational waves with an atom interferometer and analyze possible schemes

    Correlation but no causation between leaf nitrogen and maximum assimilation: the role of drought and reproduction in gas exchange in an understory tropical plant Miconia ciliata (Melastomataceae).

    Get PDF
    Alternative hypotheses were tested to explain a previously reported anomaly in the response of leaf photosynthetic capacity at light saturation (A..) in Miconia ciliata to dry-season irrigation. The anomaly is characterized by an abrupt increase in leaf A._ for nonirrigated plants at the onset of the rainy season to values that significantly exceeded corresponding measurements for plants that were irrigated during the previous dry season. Hypothesis I posits that a pulse in leaf nitrogen increases CO2 assimilation in nonirrigated plants at the onset of the wet season and is dampened for irrigated plants; this hypothesis was rejected because, although a wet-season nitrogen pulse did occur, it was identical for both irrigated and nonirrigated plants and was preceded by the increase in assimilation by nonirrigated plants. Hypothesis 2 posits that a reproduction-related, compensatory photosynthetic response occurs in nonirrigated plants following the onset of the wet season and is dampened in irrigated plants; consistent with hypothesis 2, high maximum assimilation rates for control plants in the wet season were significantly correlated with fruiting and flowering, whereas irrigation caused flowering and fruiting in the dry season, spreading M. ciliata reproductive activity in irrigated plants across the entire year

    Genome-wide analysis of long noncoding RNA stability

    Get PDF
    Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs (lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known about the post-transcriptional regulation of lncRNAs and their half-lives. Although many are easily detectable by a variety of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide. Utilizing a custom noncoding RNA array, we determined the half-lives of ∌800 lncRNAs and ∌12,000 mRNAs in the mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range, comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread functionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life 16 h). Analysis of lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated widespread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly, one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability. matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive annotation of ∌7200 mouse lncRNAs

    Vitamin D Deficiency in COVID-19 Patients and Role of Calcifediol Supplementation

    Get PDF
    Hypovitaminosis D has been associated with worse outcome in respiratory tract infections, with conflicting opinions regarding its role in Coronavirus-19 disease (COVID-19). Our study aimed to evaluate the possible relationship between 25-OH vitamin D (25OHD) values and the following conditions in patients hospitalized for COVID-19: prognosis, mortality, invasive (IV) and non-invasive (NIV) mechanical ventilation, and orotracheal intubation (OTI). A further objective was the analysis of a possible positive effect of supplementation with calcifediol on COVID-19 severity and prognosis. We analyzed 288 patients hospitalized at the San Giovanni di Dio Hospital in Florence and the Santa Maria alle Scotte Hospital in Siena, from November 2020 to February 2021. The 25OHD levels correlated positively with the partial pressure of oxygen and FiO2 (PaO2/FiO2) ratio (r = 0.17; p < 0.05). Furthermore, when we analyzed the patients according to the type of respiratory support, we found that 25OHD levels were markedly reduced in patients who underwent non-invasive ventilation and orotracheal intubation (OTI). The evaluation of the length of hospitalization in our population evidenced a longer duration of hospitalization in patients with severe 25OHD deficiency (<10 ng/mL). Moreover, we found a statistically significant difference in the mortality rate between patients who had 25OHD levels below 10 ng/mL and those with levels above this threshold in the total population (50.8% vs. 25.5%, p = 0.005), as well as between patients with 25OHD levels below 20 ng/mL and those with levels above that threshold (38.4% vs. 24.6%, p = 0.04). Moreover, COVID-19 patients supplemented with calcifediol presented a significantly reduced length of hospitalization (p < 0.05). Interestingly, when we analyzed the possible effects of calcifediol on mortality rate in patients with COVID-19, we found that the percentage of deaths was significantly higher in patients who did not receive any supplementation than in those who were treated with calcifediol (p < 0.05) In conclusion, we have demonstrated with our study the best prognosis of COVID-19 patients with adequate vitamin D levels and patients treated with calcifediol supplementation

    Coupling of Linearized Gravity to Nonrelativistic Test Particles: Dynamics in the General Laboratory Frame

    Get PDF
    The coupling of gravity to matter is explored in the linearized gravity limit. The usual derivation of gravity-matter couplings within the quantum-field-theoretic framework is reviewed. A number of inconsistencies between this derivation of the couplings, and the known results of tidal effects on test particles according to classical general relativity are pointed out. As a step towards resolving these inconsistencies, a General Laboratory Frame fixed on the worldline of an observer is constructed. In this frame, the dynamics of nonrelativistic test particles in the linearized gravity limit is studied, and their Hamiltonian dynamics is derived. It is shown that for stationary metrics this Hamiltonian reduces to the usual Hamiltonian for nonrelativistic particles undergoing geodesic motion. For nonstationary metrics with long-wavelength gravitational waves (GWs) present, it reduces to the Hamiltonian for a nonrelativistic particle undergoing geodesic \textit{deviation} motion. Arbitrary-wavelength GWs couple to the test particle through a vector-potential-like field NaN_a, the net result of the tidal forces that the GW induces in the system, namely, a local velocity field on the system induced by tidal effects as seen by an observer in the general laboratory frame. Effective electric and magnetic fields, which are related to the electric and magnetic parts of the Weyl tensor, are constructed from NaN_a that obey equations of the same form as Maxwell's equations . A gedankin gravitational Aharonov-Bohm-type experiment using NaN_a to measure the interference of quantum test particles is presented.Comment: 38 pages, 7 figures, written in ReVTeX. To appear in Physical Review D. Galley proofs corrections adde
    • 

    corecore