402 research outputs found
The Response of Test Masses to Gravitational Waves in the Coordinates of a Local Observer
The response of laser interferometers to gravitational waves has been
calculated in a number of different ways, particularly in the
transverse-traceless and the local Lorentz gauges. At first sight, it would
appear that these calculations lead to different results when the separation
between the test masses becomes comparable to the wavelength of the
gravitational wave. In this paper this discrepancy is resolved. We describe the
response of free test masses to plane gravitational waves in the coordinate
frame of a local observer and show that it acquires contributions from three
different effects: the displacement of the test masses, the apparent change in
the photon velocity, and the variation in the clock speed of the local
observer, all of which are induced by the gravitational wave. Only when taken
together do these three effects represent a quantity which is translationally
invariant. This translationally-invariant quantity is identical to the response
function calculated in the transverse-traceless gauge. We thus resolve the
well-known discrepancy between the two coordinates systems, and show that the
results found in the coordinate frame of a local observer are valid for large
separation between the masses.Comment: 25 pages, 3 figures, Latex2
On the propagation of electromagnetic radiation in the field of a plane gravitational wave
The propagation of free electromagnetic radiation in the field of a plane
gravitational wave is investigated. A solution is found one order of
approximation beyond the limit of geometrical optics in both
transverse--traceless (TT) gauge and Fermi Normal Coordinate (FNC) system. The
results are applied to the study of polarization perturbations. Two
experimental schemes are investigated in order to verify the possibility to
observe these perturbations, but it is found that the effects are exceedingly
small.Comment: 13 pages; revtex; accepted for publication in Class. Quantum Gra
Gravitational Radiation from Triple Star Systems
We have studied the main features of the gravitational radiation generated by
an astrophysical system constituted of three compact objects attracting one
another (only via gravitational interaction) in such a manner that stable
orbits do exist. We have limited our analysis to systems that can be treated
with perturbative methods. We show the profile of the gravitational waves
emitted by such systems. These results can be useful within the framework of
the new gravitational astronomy which will be made feasible by means of the new
generation of gravitational detectors such as LISA in a no longer far future.Comment: 10 pages plus 9 postscript figures; revtex; accepted for publication
in Int. J. Mod. Phys.
Is it possible to detect gravitational waves with atom interferometers?
We investigate the possibility to use atom interferometers to detect
gravitational waves. We discuss the interaction of gravitational waves with an
atom interferometer and analyze possible schemes
Correlation but no causation between leaf nitrogen and maximum assimilation: the role of drought and reproduction in gas exchange in an understory tropical plant Miconia ciliata (Melastomataceae).
Alternative hypotheses were tested to explain a previously reported anomaly in the response of leaf photosynthetic capacity at light saturation (A..) in Miconia ciliata to dry-season irrigation. The anomaly is characterized by an abrupt increase in leaf A._ for nonirrigated plants at the onset of the rainy season to values that significantly exceeded corresponding measurements for plants that were irrigated during the previous dry season. Hypothesis I posits that a pulse in leaf nitrogen increases CO2 assimilation in nonirrigated plants at the onset of the wet season and is dampened for irrigated plants; this hypothesis was rejected because, although a wet-season nitrogen pulse did occur, it was identical for both irrigated and nonirrigated plants and was preceded by the increase in assimilation by nonirrigated plants. Hypothesis 2 posits that a reproduction-related, compensatory photosynthetic response occurs in nonirrigated plants following the onset of the wet season and is dampened in irrigated plants; consistent with hypothesis 2, high maximum assimilation rates for control plants in the wet season were significantly correlated with fruiting and flowering, whereas irrigation caused flowering and fruiting in the dry season, spreading M. ciliata reproductive activity in irrigated plants across the entire year
Genome-wide analysis of long noncoding RNA stability
Transcriptomic analyses have identified tens of thousands of intergenic, intronic, and cis-antisense long noncoding RNAs (lncRNAs) that are expressed from mammalian genomes. Despite progress in functional characterization, little is known about the post-transcriptional regulation of lncRNAs and their half-lives. Although many are easily detectable by a variety of techniques, it has been assumed that lncRNAs are generally unstable, but this has not been examined genome-wide. Utilizing a custom noncoding RNA array, we determined the half-lives of âŒ800 lncRNAs and âŒ12,000 mRNAs in the mouse Neuro-2a cell line. We find only a minority of lncRNAs are unstable. LncRNA half-lives vary over a wide range, comparable to, although on average less than, that of mRNAs, suggestive of complex metabolism and widespread functionality. Combining half-lives with comprehensive lncRNA annotations identified hundreds of unstable (half-life 16 h). Analysis of lncRNA features revealed that intergenic and cis-antisense RNAs are more stable than those derived from introns, as are spliced lncRNAs compared to unspliced (single exon) transcripts. Subcellular localization of lncRNAs indicated widespread trafficking to different cellular locations, with nuclear-localized lncRNAs more likely to be unstable. Surprisingly, one of the least stable lncRNAs is the well-characterized paraspeckle RNA Neat1, suggesting Neat1 instability contributes to the dynamic nature of this subnuclear domain. We have created an online interactive resource (http://stability. matticklab.com) that allows easy navigation of lncRNA and mRNA stability profiles and provides a comprehensive annotation of âŒ7200 mouse lncRNAs
Vitamin D Deficiency in COVID-19 Patients and Role of Calcifediol Supplementation
Hypovitaminosis D has been associated with worse outcome in respiratory tract infections, with conflicting opinions regarding its role in Coronavirus-19 disease (COVID-19). Our study aimed to evaluate the possible relationship between 25-OH vitamin D (25OHD) values and the following conditions in patients hospitalized for COVID-19: prognosis, mortality, invasive (IV) and non-invasive (NIV) mechanical ventilation, and orotracheal intubation (OTI). A further objective was the analysis of a possible positive effect of supplementation with calcifediol on COVID-19 severity and prognosis. We analyzed 288 patients hospitalized at the San Giovanni di Dio Hospital in Florence and the Santa Maria alle Scotte Hospital in Siena, from November 2020 to February 2021. The 25OHD levels correlated positively with the partial pressure of oxygen and FiO2 (PaO2/FiO2) ratio (r = 0.17; p < 0.05). Furthermore, when we analyzed the patients according to the type of respiratory support, we found that 25OHD levels were markedly reduced in patients who underwent non-invasive ventilation and orotracheal intubation (OTI). The evaluation of the length of hospitalization in our population evidenced a longer duration of hospitalization in patients with severe 25OHD deficiency (<10 ng/mL). Moreover, we found a statistically significant difference in the mortality rate between patients who had 25OHD levels below 10 ng/mL and those with levels above this threshold in the total population (50.8% vs. 25.5%, p = 0.005), as well as between patients with 25OHD levels below 20 ng/mL and those with levels above that threshold (38.4% vs. 24.6%, p = 0.04). Moreover, COVID-19 patients supplemented with calcifediol presented a significantly reduced length of hospitalization (p < 0.05). Interestingly, when we analyzed the possible effects of calcifediol on mortality rate in patients with COVID-19, we found that the percentage of deaths was significantly higher in patients who did not receive any supplementation than in those who were treated with calcifediol (p < 0.05) In conclusion, we have demonstrated with our study the best prognosis of COVID-19 patients with adequate vitamin D levels and patients treated with calcifediol supplementation
Coupling of Linearized Gravity to Nonrelativistic Test Particles: Dynamics in the General Laboratory Frame
The coupling of gravity to matter is explored in the linearized gravity
limit. The usual derivation of gravity-matter couplings within the
quantum-field-theoretic framework is reviewed. A number of inconsistencies
between this derivation of the couplings, and the known results of tidal
effects on test particles according to classical general relativity are pointed
out. As a step towards resolving these inconsistencies, a General Laboratory
Frame fixed on the worldline of an observer is constructed. In this frame, the
dynamics of nonrelativistic test particles in the linearized gravity limit is
studied, and their Hamiltonian dynamics is derived. It is shown that for
stationary metrics this Hamiltonian reduces to the usual Hamiltonian for
nonrelativistic particles undergoing geodesic motion. For nonstationary metrics
with long-wavelength gravitational waves (GWs) present, it reduces to the
Hamiltonian for a nonrelativistic particle undergoing geodesic
\textit{deviation} motion. Arbitrary-wavelength GWs couple to the test particle
through a vector-potential-like field , the net result of the tidal forces
that the GW induces in the system, namely, a local velocity field on the system
induced by tidal effects as seen by an observer in the general laboratory
frame. Effective electric and magnetic fields, which are related to the
electric and magnetic parts of the Weyl tensor, are constructed from that
obey equations of the same form as Maxwell's equations . A gedankin
gravitational Aharonov-Bohm-type experiment using to measure the
interference of quantum test particles is presented.Comment: 38 pages, 7 figures, written in ReVTeX. To appear in Physical Review
D. Galley proofs corrections adde
- âŠ