8,846 research outputs found
The optical and near-infrared properties of nearby groups of galaxies
We present a study of the optical (BRI) and near-infrared (JHK) luminosity
fuctions (LFs) of the GEMS sample of 60 nearby groups of galaxies between
0<z<0.04, with our optical CCD photometry and near-IR photometry from the 2MASS
survey. The LFs in all filters show a depletion of galaxies of intermediate
luminosity, two magnitudes fainter than L*, within 0.3 R{500} from the centres
of X-ray faint groups. This feature is not as pronounced in X-ray bright
gropus, and vanishes when LFs are found out to R{500}, even in the X-ray dim
groups. We argue that this feature arises due to the enhanced merging of
intermediate-mass galaxies in the dynamically sluggish environment of low
velocity-dispersion groups, indicating that merging is important in galaxy
evolution even at z~0.Comment: to appear in the proceedings of the ESO workshop "Groups of Galaxies
in the Nearby Universe", Santiago, Dec 5-9, 2005. Eds. I. Saviane, V. Ivanov,
& J. Borissova (Springer Verlag); 5 page
Bulge Globular Clusters in Spiral Galaxies
There is now strong evidence that the metal-rich globular clusters (GC) near
the center of our Galaxy are associated with the Galactic bulge rather than the
disk as previously thought. Here we extend the concept of bulge GCs to the GC
systems of nearby spiral galaxies. In particular, the kinematic and metallicity
properties of the GC systems favor a bulge rather than a disk origin. The
number of metal-rich GCs normalized by the bulge luminosity is roughly constant
(i.e. bulge S_N ~ 1) in nearby spirals, and this value is similar to that for
field ellipticals when only the red (metal--rich) GCs are considered. We argue
that the metallicity distributions of GCs in spiral and elliptical galaxies are
remarkably similar, and that they obey the same correlation of mean GC
metallicity with host galaxy mass. We further suggest that the metal-rich GCs
in spirals are the direct analogs of the red GCs seen in ellipticals. The
formation of a bulge/spheroidal stellar system is accompanied by the formation
of metal-rich GCs. The similarities between GC systems in spiral and elliptical
galaxies appear to be greater than the differences.Comment: 5 pages, Latex, 2 figures, 1 table, Accepted for publication in ApJ
Letter
Chiral discrimination in optical binding
The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed “optical binding.” Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported
Damp Mergers: Recent Gaseous Mergers without Significant Globular Cluster Formation?
Here we test the idea that new globular clusters (GCs) are formed in the same
gaseous ("wet") mergers or interactions that give rise to the young stellar
populations seen in the central regions of many early-type galaxies. We compare
mean GC colors with the age of the central galaxy starburst. The red GC
subpopulation reveals remarkably constant mean colors independent of galaxy
age. A scenario in which the red GC subpopulation is a combination of old and
new GCs (formed in the same event as the central galaxy starburst) can not be
ruled out; although this would require an age-metallicity relation for the
newly formed GCs that is steeper than the Galactic relation. However, the data
are also well described by a scenario in which most red GCs are old, and few,
if any, are formed in recent gaseous mergers. This is consistent with the old
ages inferred from some spectroscopic studies of GCs in external systems. The
event that induced the central galaxy starburst may have therefore involved
insufficient gas mass for significant GC formation. We term such gas-poor
events "damp" mergers.Comment: 17 pages, 5 figures, ApJ accepte
Structural parameters for globular clusters in M31 and generalizations for the fundamental plane
The structures of globular clusters (GCs) reflect their dynamical states and
past histories. High-resolution imaging allows the exploration of morphologies
of clusters in other galaxies. Surface brightness profiles from new Hubble
Space Telescope observations of 34 globular clusters in M31 are presented,
together with fits of several different structural models to each cluster. M31
clusters appear to be adequately fit by standard King models, and do not
obviously require alternate descriptions with relatively stronger halos, such
as are needed to fit many GCs in other nearby galaxies. The derived structural
parameters are combined with corrected versions of those measured in an earlier
survey to construct a comprehensive catalog of structural and dynamical
parameters for M31 GCs with a sample size similar to that for the Milky Way.
Clusters in M31, the Milky Way, Magellanic Clouds, Fornax dwarf spheroidal and
NGC 5128 define a very tight fundamental plane with identical slopes. The
combined evidence for these widely different galaxies strongly reinforces the
view that old globular clusters have near-universal structural properties
regardless of host environment.Comment: AJ in press; 59 pages including 16 figure
Dynamical Evolution of Globular Cluster Systems formed in Galaxy Mergers: Deep HST/ACS Imaging of Old and Intermediate-Age Globular Clusters in NGC 3610
(ABRIDGED) The ACS camera on board the Hubble Space Telescope has been used
to obtain deep images of the giant elliptical galaxy NGC 3610, a
well-established dissipative galaxy merger remnant. These observations
supersede previous WFPC2 images which revealed the presence of a population of
metal-rich globular clusters (GCs) of intermediate age (~1.5-4 Gyr). We detect
a total of 580 GC candidates, 46% more than from the previous WFPC2 images. The
new photometry strengthens the significance of the previously found bimodality
of the color distribution of GCs. Peak colors in V-I are 0.93 +/-0.01 and 1.09
+/- 0.01 for the blue and red subpopulations, respectively. The luminosity
function (LF) of the inner 50% of the metal-rich (`red') population of GCs
differs markedly from that of the outer 50%. In particular, the LF of the inner
50% of the red GCs shows a flattening consistent with a turnover that is about
1.0 mag fainter than the turnover of the blue GC LF. This is consistent with
predictions of recent models of GC disruption for the age range mentioned above
and for metallicities that are consistent with the peak color of the red GCs as
predicted by population synthesis models. We determine the specific frequency
of GCs in NGC 3610 and find a present-day value of S_N = 1.4 +/- 0.6. We
estimate that this value will increase to S_N = 3.8 +/- 1.7 at an age of 10
Gyr, which is consistent with typical S_N values for `normal' ellipticals. Our
findings constitute further evidence in support of the notion that metal-rich
GC populations formed during major mergers involving gas-rich galaxies can
evolve dynamically (through disruption processes) into the red, metal-rich GC
populations that are ubiquitous in `normal' giant ellipticals.Comment: 15 pages, 14 figures, 4 tables. Accepted for publication in The
Astronomical Journal. Figure 6 somewhat degraded to adhere to astro-ph rule
- …
