28 research outputs found

    Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks

    No full text
    A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V{\kappa_{2\mathrm{V}}} , excluding κ2V={\kappa_{2\mathrm{V}}} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (HH) pair production via gluon and vector boson (VV) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{−1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted HH pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the HH self-coupling and the quartic VVHH couplings, κ2Vκ_{2V}, excluding κ2V=0κ_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138  fb-1 collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V, excluding κ2V=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb1^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ2V\kappa_{2V}, excluding κ2V\kappa_{2V} = 0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values

    Search for nonresonant Higgs boson pair production in the four leptons plus twob jets final state in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    The first search for nonresonant production of Higgs boson pairs (HH) with one H decaying into four leptons and the other into a pair of b quarks is presented, using proton-proton collisions recorded at a center-of-mass energy of s \sqrt{s} = 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb1^{−1}. A 95% confidence level upper limit of 32.4 is set on the signal strength modifier μ, defined as the ratio of the observed HH production rate in the HHZZbb4bb \textrm{HH}\to {\textrm{ZZ}}^{\ast}\textrm{b}\overline{\textrm{b}}\to 4\ell \textrm{b}\overline{\textrm{b}} decay channel to the standard model (SM) expectation. Possible modifications of the H trilinear coupling λHHH_{HHH} with respect to the SM value are investigated. The coupling modifier κλ_{λ}, defined as λHHH_{HHH} divided by its SM prediction, is constrained to be within the observed (expected) range −8.8 (−9.8) < κλ_{λ}< 13.4 (15.0) at 95% confidence level.[graphic not available: see fulltext

    Search for long-lived particles decaying to a pair of muons in proton-proton collisions at s \sqrt{s} = 13 TeV

    No full text
    An inclusive search for long-lived exotic particles decaying to a pair of muons is presented. The search uses data collected by the CMS experiment at the CERN LHC in proton-proton collisions at s \sqrt{s} = 13 TeV in 2016 and 2018 and corresponding to an integrated luminosity of 97.6 fb1^{−1}. The experimental signature is a pair of oppositely charged muons originating from a common secondary vertex spatially separated from the pp interaction point by distances ranging from several hundred μm to several meters. The results are interpreted in the frameworks of the hidden Abelian Higgs model, in which the Higgs boson decays to a pair of long-lived dark photons ZD_{D}, and of a simplified model, in which long-lived particles are produced in decays of an exotic heavy neutral scalar boson. For the hidden Abelian Higgs model with m(ZD_{D}) greater than 20 GeV and less than half the mass of the Higgs boson, they provide the best limits to date on the branching fraction of the Higgs boson to dark photons for cτ(ZD_{D}) (varying with m(ZD_{D})) between 0.03 and ≈0.5 mm, and above ≈0.5 m. Our results also yield the best constraints on long-lived particles with masses larger than 10 GeV produced in decays of an exotic scalar boson heavier than the Higgs boson and decaying to a pair of muons.[graphic not available: see fulltext

    Search for narrow resonances in the <math display="inline"><mi>b</mi></math>-tagged dijet mass spectrum in proton-proton collisions at <math display="inline"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>

    No full text
    International audienceA search is performed for narrow resonances decaying to final states of two jets, with at least one jet originating from a b quark, in proton-proton collisions at s=13  TeV. The data set corresponds to an integrated luminosity of 138  fb-1 collected with the CMS detector at the LHC. Jets originating from energetic b hadrons are identified through a b-tagging algorithm that utilizes a deep neural network or the presence of a muon inside a jet. The invariant mass spectrum of jet pairs is well described by a smooth parametrization and no evidence for the production of new particles is observed. Upper limits on the production cross section are set for excited b quarks and other resonances decaying to dijet final states containing b quarks. These limits exclude at 95% confidence level models of Z′ bosons with masses from 1.8 TeV to 2.4 TeV and of excited b quarks with masses from 1.8 TeV to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date

    Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at s \sqrt{s} = 13 TeV

    No full text
    International audienceThe measurements of the inclusive and differential fiducial cross sections of the Higgs boson decaying to a pair of photons are presented. The analysis is performed using proton-proton collisions data recorded with the CMS detector at the LHC at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 137 fb1^{−1}. The inclusive fiducial cross section is measured to be σfid=73.45.3+5.4(stat)2.2+2.4(syst) {\sigma}_{\textrm{fid}}={73.4}_{-5.3}^{+5.4}{\left(\textrm{stat}\right)}_{-2.2}^{+2.4}\left(\textrm{syst}\right) fb, in agreement with the standard model expectation of 75.4 ± 4.1 fb. The measurements are also performed in fiducial regions targeting different production modes and as function of several observables describing the diphoton system, the number of additional jets present in the event, and other kinematic observables. Two double differential measurements are performed. No significant deviations from the standard model expectations are observed.[graphic not available: see fulltext

    Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at s=\sqrt{s} = 13 TeV

    No full text
    The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at s=\sqrt{s} = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb1^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ\mu\mu Majorana neutrino mass of 10.8 GeV.The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at s=13  TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138  fb−1. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV–25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision data set recorded at s\sqrt{s} = 13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb1^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ\mu\mu Majorana neutrino mass of 10.8 GeV

    Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the ττ\tau\tau final state

    No full text
    A study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138 fb1^{-1}. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ\tau leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions.A study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138  fb-1. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions.A study of anomalous couplings of the Higgs boson to vector bosons and fermions is presented. The data were recorded by the CMS experiment at a center-of-mass energy of pp collisions at the LHC of 13 TeV and correspond to an integrated luminosity of 138 fb1^{-1}. The study uses Higgs boson candidates produced mainly in gluon fusion or electroweak vector boson fusion at the LHC that subsequently decay to a pair of τ\tau leptons. Matrix-element and machine-learning techniques were employed in a search for anomalous interactions. The results are combined with those from the four-lepton and two-photon decay channels to yield the most stringent constraints on anomalous Higgs boson couplings to date. The pure CPCP-odd scenario of the Higgs boson coupling to gluons is excluded at 2.4 standard deviations. The results are consistent with the standard model predictions

    Search for direct pair production of supersymmetric partners of τ\tau leptons in the final state with two hadronically decaying τ\tau leptons and missing transverse momentum in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search for the direct production of a pair of ττ sleptons, the supersymmetric partners of ττ leptons, is presented. Each ττ slepton is assumed to decay to a ττ lepton and the lightest supersymmetric particle (LSP), which is assumed to be stable and to not interact in the detector, leading to an imbalance in the total reconstructed transverse momentum. The search is carried out in events identified as containing two ττ leptons, each decaying to one or more hadrons and a neutrino, and significant transverse momentum imbalance. In addition to scenarios in which the ττ sleptons decay promptly, the search also addresses scenarios in which the ττ sleptons have sufficiently long lifetimes to give rise to nonprompt ττ leptons. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV at the CERN LHC with the CMS detector in 2016–2018, and correspond to an integrated luminosity of 138 fb1^{-1}. No significant excess is seen with respect to standard model expectations. Upper limits on cross sections for the pair production of ττ sleptons are obtained in the framework of simplified models. In a scenario in which the ττ sleptons are superpartners of left-handed ττ leptons, and each undergoes a prompt decay to a ττ lepton and a nearly massless LSP, ττ slepton masses between 115 and 340 GeV are excluded. In a scenario in which the lifetime of the ττ sleptons corresponds to cτ0cτ_0 = 0.1 mm, where τ0τ_0 represents the mean proper lifetime of the ττ slepton, masses between 150 and 220 GeV are excluded

    Search for CPCP violation in ttH and tH production in multilepton channels in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the tt \overline{\textrm{t}} H and tH associated production, using 138 fb1^{−1} of data collected in proton-proton collisions at s \sqrt{s} = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H → ττ and the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation of CP -even from CP -odd scenarios. Two-dimensional confidence regions are set on κt_{t} and κt \overset{\sim }{\kappa } _{t}, which are respectively defined as the CP -even and CP -odd top-Higgs Yukawa coupling modifiers. No significant fractional CP -odd contributions, parameterized by the quantity |fCPHtt {f}_{CP}^{\textrm{Htt}} | are observed; the parameter is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.59 with an interval of (0.24, 0.81) at 68% confidence level. The results are combined with previous results covering the H → ZZ and H → γγ decay modes, yielding two- and one-dimensional confidence regions on κt_{t} and κt \overset{\sim }{\kappa } _{t}, while |fCPHtt {f}_{CP}^{\textrm{Htt}} | is determined to be |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.28 with an interval of |fCPHtt {f}_{CP}^{\textrm{Htt}} | < 0.55 at 68% confidence level, in agreement with the standard model CP -even prediction of |fCPHtt {f}_{CP}^{\textrm{Htt}} | = 0.[graphic not available: see fulltext
    corecore