1,587 research outputs found
Evaluation of the health-related quality of life of children in Schistosoma haematobium-endemic communities in Kenya: a cross-sectional study.
BACKGROUND: Schistosomiasis remains a global public health challenge, with 93% of the ~237 million infections occurring in sub-Saharan Africa. Though rarely fatal, its recurring nature makes it a lifetime disorder with significant chronic health burdens. Much of its negative health impact is due to non-specific conditions such as anemia, undernutrition, pain, exercise intolerance, poor school performance, and decreased work capacity. This makes it difficult to estimate the disease burden specific to schistosomiasis using the standard DALY metric.
METHODOLOGY/PRINCIPAL FINDINGS: In our study, we used Pediatric Quality of Life Inventory (PedsQL), a modular instrument available for ages 2-18 years, to assess health-related quality of life (HrQoL) among children living in a Schistosoma haematobium-endemic area in coastal Kenya. The PedsQL questionnaires were administered by interview to children aged 5-18 years (and their parents) in five villages spread across three districts. HrQoL (total score) was significantly lower in villages with high prevalence of S. haematobium (-4.0%, p<0.001) and among the lower socioeconomic quartiles (-2.0%, p<0.05). A greater effect was seen in the psychosocial scales as compared to the physical function scale. In moderate prevalence villages, detection of any parasite eggs in the urine was associated with a significant 2.1% (p<0.05) reduction in total score. The PedsQL reliabilities were generally high (Cronbach alphas ≥0.70), floor effects were acceptable, and identification of children from low socioeconomic standing was valid.
CONCLUSIONS/SIGNIFICANCE: We conclude that exposure to urogenital schistosomiasis is associated with a 2-4% reduction in HrQoL. Further research is warranted to determine the reproducibility and responsiveness properties of QoL testing in relation to schistosomiasis. We anticipate that a case definition based on more sensitive parasitological diagnosis among younger children will better define the immediate and long-term HrQoL impact of Schistosoma infection
Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates
Background Fermentation of bioethanol using lignocellulosic biomass as a raw material provides a sustainable alternative to current biofuel production methods by utilising waste food streams as raw material. Before lignocellulose can be fermented it requires physical, chemical and enzymatic treatment in order to release monosaccharides, a process that causes the chemical transformation of glucose and xylose into the cyclic aldehydes furfural and hydroxyfurfural. These furan compounds are potent inhibitors of Saccharomyces fermentation, and consequently furfural tolerant strains of Saccharomyces are required for lignocellulosic fermentation. Results This study investigated yeast tolerance to furfural and hydroxyfurfural using a collection of 71 environmental and industrial isolates of the baker’s yeast Saccharomyces cerevisiae and its closest relative Saccharomyces paradoxus. The Saccharomyces strains were initially screened for growth on media containing 100 mM glucose and 1.5 mg ml-1 furfural. Five strains were identified that showed a significant tolerance to growth in the presence of furfural and these were then screened for growth and ethanol production in the presence of increasing amounts (0.1-4 mg ml-1) of furfural. Conclusions Of the five furfural tolerant strains S. cerevisiae NCYC 3451 displayed the greatest furfural resistance, and was able to grow in the presence of up to 3.0 mg ml-1 furfural. Furthermore, ethanol production in this strain did not appear to be inhibited by furfural, with the highest ethanol yield observed at 3.0 mg ml-1 furfural. Although furfural resistance was not found to be a trait specific to any one particular lineage or population, three of the strains were isolated from environments where they might be continually exposed to low levels of furfural through the on-going natural degradation of lignocelluloses, and would therefore develop elevated levels of resistance to these furan compounds. Thus these strains represent good candidates for future studies of genetic variation relevant to understanding and manipulating furfural resistance and in the development of tolerant ethanologenic yeast strains for use in bioethanol production from lignocellulose processing
Long-term antidepressant use: a qualitative study on perspectives of patients and GPs in primary care
Background
Antidepressant use is often prolonged in patients with anxiety and/or depressive disorder(s) compared with recommendations in treatment guidelines to discontinue after sustained remission.
Aim
To unravel the motivations of patients and GPs causing long-term antidepressant use and to gain insight into possibilities to prevent unnecessary long-term use. Design and setting Qualitative study using semi-structured, in-depth interviews with patients and GPs in the Netherlands.
Method
Patients with anxiety and/or depressive disorder(s) (n = 38) and GPs (n = 26) were interviewed. Innovatively, the interplay between patients and their GPs was also investigated by means of patient-GP dyads (n = 20).
Results
The motives and barriers of patients and GPs to continue or discontinue antidepressants were related to the availability of supportive guidance during discontinuation, the personal circumstances of the patient, and considerations of the patient or GP. Importantly, dyads indicated a large variation in policies of general practices around long-term use and continuation or discontinuation of antidepressants. Dyads further indicated that patients and GPs seemed unaware of each other's (mismatching) expectations regarding responsibility to initiate discussing continuation or discontinuation.
Conclusion
Although motives and barriers to antidepressant continuation or discontinuation were related to the same themes for patients and GPs, dyads indicated discrepancies between them. Discussion between patients and GPs about antidepressant use and continuation or discontinuation may help clarify mutual expectations and opinions. Agreements between a patient and their GP can be included in a patient-tailored treatment plan
Preserving the impossible: conservation of soft-sediment hominin footprint sites and strategies for three-dimensional digital data capture.
Human footprints provide some of the most publically emotive and tangible evidence of our ancestors. To the scientific community they provide evidence of stature, presence, behaviour and in the case of early hominins potential evidence with respect to the evolution of gait. While rare in the geological record the number of footprint sites has increased in recent years along with the analytical tools available for their study. Many of these sites are at risk from rapid erosion, including the Ileret footprints in northern Kenya which are second only in age to those at Laetoli (Tanzania). Unlithified, soft-sediment footprint sites such these pose a significant geoconservation challenge. In the first part of this paper conservation and preservation options are explored leading to the conclusion that to 'record and digitally rescue' provides the only viable approach. Key to such strategies is the increasing availability of three-dimensional data capture either via optical laser scanning and/or digital photogrammetry. Within the discipline there is a developing schism between those that favour one approach over the other and a requirement from geoconservationists and the scientific community for some form of objective appraisal of these alternatives is necessary. Consequently in the second part of this paper we evaluate these alternative approaches and the role they can play in a 'record and digitally rescue' conservation strategy. Using modern footprint data, digital models created via optical laser scanning are compared to those generated by state-of-the-art photogrammetry. Both methods give comparable although subtly different results. This data is evaluated alongside a review of field deployment issues to provide guidance to the community with respect to the factors which need to be considered in digital conservation of human/hominin footprints
Heme metabolism genes Downregulated in COPD Cachexia.
IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage
In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections
Plastic shrinkage cracking of concrete - Roles of osmotic suction
Plastic shrinkage cracking of concrete occurs when the stresses arising in the concrete, due to a combination of suction and restraints of deformation such as reinforcement or formwork, equal its strength. However, three different types of suctions should be distinguished, namely total, matric and osmotic suctions. Although the total suction comprises matric and osmotic suctions, it is often used interchangeably with matric suction, with the underlying unconfirmed assumption that either the osmotic suction or its effect is negligible. In this paper, after a discussion of the pore moisture suctions and strength of unsaturated early-age concrete, experimental investigations of the suctions arising in, and the tensile strength and shear strength of, fly ash mixed with solutions of different osmotic suctions are described. It was found that osmotic suction has negligible effect on the shear and tensile strength, and hence, by inference, the inter-particle stresses in the fly ash mixture and early-age concrete. This strongly suggests that the role played by osmotic suction in the plastic shrinkage cracking of concrete is minimal and, accordingly, justifies the focus of earlier researchers on matric suction only
Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
Novel insights into host-fungal pathogen interactions derived from live-cell imaging
Acknowledgments The authors acknowledge funding from the Wellcome Trust (080088, 086827, 075470 and 099215) including a Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377 and FP7-2007–2013 grant agreement HEALTH-F2-2010-260338–ALLFUN to NARG.Peer reviewedPublisher PD
Comprehensive characterization of molecular interactions based on nanomechanics
Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions
- …
