26 research outputs found

    Comparison of intranasal versus intravenous midazolam for management of status epilepticus in dogs: A multi-center randomized parallel group clinical study.

    Get PDF
    BACKGROUND: The intranasal (IN) route for rapid drug administration in patients with brain disorders, including status epilepticus, has been investigated. Status epilepticus is an emergency, and the IN route offers a valuable alternative to other routes, especially when these fail. OBJECTIVES: To compare IN versus IV midazolam (MDZ) at the same dosage (0.2 mg/kg) for controlling status epilepticus in dogs. ANIMALS: Client-owned dogs (n = 44) with idiopathic epilepsy, structural epilepsy, or epilepsy of unknown origin manifesting as status epilepticus. METHODS: Randomized parallel group clinical trial. Patients were randomly allocated to the IN-MDZ (n = 21) or IV-MDZ (n = 23) group. Number of successfully treated cases (defined as seizure cessation within 5 minutes and lasting for ≥10 minutes), seizure cessation time, and adverse effects were recorded. Comparisons were performed using the Fisher's exact and Wilcoxon rank sum tests with statistical significance set at α < .05. RESULTS: IN-MDZ and IV-MDZ successfully stopped status epilepticus in 76% and 61% of cases, respectively (P = .34). The median seizure cessation time was 33 and 64 seconds for IN-MDZ and IV-MDZ, respectively (P = .63). When the time to place an IV catheter was taken into account, IN-MDZ (100 seconds) was superior (P = .04) to IV-MDZ (270 seconds). Sedation and ataxia were seen in 88% and 79% of the dogs treated with IN-MDZ and IV-MDZ, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: Both routes are quick, safe, and effective for controlling status epilepticus. However, the IN route demonstrated superiority when the time needed to place an IV catheter was taken into account

    High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites

    Get PDF
    Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well
    corecore