22 research outputs found

    PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2

    Get PDF
    The Bacillus subtilis strain NCD-2 is an important biocontrol agent against cotton verticillium wilt and cotton sore shin in the field, which are caused by Verticillium dahliae Kleb and Rhizoctonia solani Kuhn, respectively. A mutant of strain NCD-2, designated M216, with decreased antagonism to V. dahliae and R. solani, was selected by mini-Tn10 mutagenesis and in vitro virulence screening. The inserted gene in the mutant was cloned and identified as the phoR gene, which encodes a sensor kinase in the PhoP/PhoR two-component system. Compared to the wild-type strain, the APase activities of the mutant was decreased significantly when cultured in low phosphate medium, but no obvious difference was observed when cultured in high phosphate medium. The mutant also grew more slowly on organic phosphate agar and lost its phosphatidylcholine-solubilizing ability. The suppression of cotton seedling damping-off in vivo and colonization of the rhizosphere of cotton also decreased in the mutant strain when compared with the wild type strain. All of these characteristics could be partially restored by complementation of the phoR gene in the M216 mutant

    Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in <it>Lactobacillaceae </it>and <it>Leuconostocaceae</it>, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest.</p> <p>Results</p> <p>The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in <it>Lactobacillus helveticus </it>and 17 in <it>Lactobacillus casei</it>. The OmpR/IIIA family was the most prevalent in <it>Lactobacillaceae </it>accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these <it>Lactobacillaceae </it>by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in <it>Lactobacillaceae</it>.</p> <p>Conclusions</p> <p>The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in <it>Lactobacillaceae</it>, although some HGT events cannot be ruled out. This would agree with the genomic analyses of <it>Lactobacillales </it>which show that gene losses have been a major trend in the evolution of this group.</p

    Single gene locus changes perturb complex microbial communities as much as apex predator loss

    Get PDF
    Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multitrophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic variability can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change

    Inhibition of glycosaminoglycan synthesis using rhodamine B in a mouse model of mucopolysaccharidosis type IIIA

    No full text
    Reduction of an enzyme activity required for the lysosomal degradation of glycosaminoglycan (gag) chains will result in a mucopolysaccharidosis (MPS) disorder. Substrate deprivation therapy (SDT), a potential therapy option for MPS with residual enzyme activity, aims to reduce the synthesis of gag chains, the natural substrate for the deficient enzyme. Reduced substrate levels would balance the reduced level of enzyme in patient cells, resulting in normalized gag turnover. Rhodamine B, a nonspecific inhibitor, reduced gag synthesis in a range of normal and MPS cells and also decreased lysosomal storage of gag in MPS VI (72%) and MPS IIIA (60%) cells. Body weight gain of male MPS IIIA mice treated with 1 mg/kg rhodamine B was reduced compared with untreated MPS IIIA mice and was indistinguishable from that of normal mice. Liver size, total gag content, and lysosomal gag was reduced in treated MPS IIIA animals as was urinary gag excretion. Lysosomal gag content in the brain was also reduced by treatment. The alteration in MPS IIIA clinical pathology by rhodamine B, combined with the observation that treatment had no effect on the health of normal animals, demonstrates the potential for SDT in general as a therapy for MPS disorders
    corecore