9 research outputs found

    Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants

    No full text
    Summary I. Introduction II. Three types of multifunctionality III. Significance of multifunctional protease inhibitors in the plant research arena Acknowledgements References Summary: Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design

    Activity-based protein profiling of hydrolytic enzymes induced by gibberellic acid in isolated aleurone layers of malting barley.

    No full text
    During barley germination, the aleurone layer secretes most of the enzymes required to degrade the endosperm, many of which are yet to be characterized. We used activity-based protein profiling (ABPP) to detect a range of active enzymes extracted from aleurone layers isolated from grains of a commercial malting barley variety incubated with or with out gibberellic acid (GA). Enzymes found to be induced by GA were putative aleurains, cathepsin-B-like proteases and serine hydrolases. By using an inhibitory sugar panel, a specific active retaining β-glycosidase in the barley aleurone was identified as a xylanase. Our results show that ABPP can be used rapidly to identify a variety of active enzyme isoforms in cereal aleurone without the need for enzyme purification

    Activity-based protein profiling of hydrolytic enzymes induced by gibberellic acid in isolated aleurone layers of malting barley.

    No full text
    During barley germination, the aleurone layer secretes most of the enzymes required to degrade the endosperm, many of which are yet to be characterized. We used activity-based protein profiling (ABPP) to detect a range of active enzymes extracted from aleurone layers isolated from grains of a commercial malting barley variety incubated with or with out gibberellic acid (GA). Enzymes found to be induced by GA were putative aleurains, cathepsin-B-like proteases and serine hydrolases. By using an inhibitory sugar panel, a specific active retaining β-glycosidase in the barley aleurone was identified as a xylanase. Our results show that ABPP can be used rapidly to identify a variety of active enzyme isoforms in cereal aleurone without the need for enzyme purification

    A homology-guided, genome-based proteome for improved proteomics in the alloploid Nicotiana benthamiana

    Get PDF
    Background: Nicotiana benthamiana is an important model organism of the Solanaceae (Nightshade) family. Several draft assemblies of the N. benthamiana genome have been generated, but many of the gene-models in these draft assemblies appear incorrect. Results: Here we present an improved proteome based on the Niben1.0.1 draft genome assembly guided by gene models from other Nicotiana species. Due to the fragmented nature of the Niben1.0.1 draft genome, many protein-encoding genes are missing or partial. We complement these missing proteins by similarly annotating other draft genome assemblies. This approach overcomes problems caused by mis-annotated exon-intron boundaries and mis-assigned short read transcripts to homeologs in polyploid genomes. With an estimated 98.1% completeness; only 53,411 protein-encoding genes; and improved protein lengths and functional annotations, this new predicted proteome is better in assigning spectra than the preceding proteome annotations. This dataset is more sensitive and accurate in proteomics applications, clarifying the detection by activity-based proteomics of proteins that were previously predicted to be inactive. Phylogenetic analysis of the subtilase family of hydrolases reveal inactivation of likely homeologs, associated with a contraction of the functional genome in this alloploid plant species. Finally, we use this new proteome annotation to characterize the extracellular proteome as compared to a total leaf proteome, which highlights the enrichment of hydrolases in the apoplast. Conclusions: This proteome annotation provides the community working with Nicotiana benthamiana with an important new resource for functional proteomics.</p

    The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire.

    No full text
    Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming

    The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire.

    No full text
    Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming
    corecore