814 research outputs found
A microstructured wavefront filter for the Darwin nulling interferometer
The European Space Agency's space-based Darwin mission aims to directly detect extrasolar Earth-like planets using nulling interferometry. However, in order to accomplish this using current optical technology, the interferometer input beams must be filtered to remove local wavefront errors. Although short lengths of single-mode fibre are ideal wavefront filters, Darwin's operating wavelength range of 4 - 20”m presents real challenges for optical fibre technology. In addition to the fact that step-index fibres only offer acceptable coupling efficiency over about one octave of optical bandwidth, very few suitable materials are transparent within this wavelength range. Microstructured optical fibres offer two unique properties that hold great promise for this application; they can be made from a single-material and offer endlessly single-mode guidance. Here we explore the advantages of using a microstructured fibre as a broadband wavefront filter for 4 - 20 ”m
Modelling applications of photonic bandgap fibres
Photonic crystal fibres (PCFs)[1] are one of the most exciting developments in the field of photonics that has emerged in recent years. Not only have they already led to cheap all-fibre high brightness white light sources and have sparked a renaissance in the field of nonlinear optics but they also have the potential to dramatically change the next generation of telecommunication systems. PCFs can be split into two categories, the first have a solid core and guide light by modified total internal reflection, while the second photonic bandgap fibres (PBF) guide light by photonic bandgap effects and typically have a low index core compared to the cladding. Also of interest are "arrow" fibres which have a solid core and guide light due to the arrangement of high index defects in the cladding. In this paper we will be concentrating on designing and manipulating the properties of PBFs. etc..
Use of variational techniques for the estimation of neutron detection efficiency
The neutron detection efficiency is a parameter required in the measurement of reactivity by the modified source technique. The direct solution of the detection efficiency at a perturbed state is costly. To solve for this, a particular variational functional, the Lewins' type variational functional, is presented. The functional is a ratio of two other functionals, each dealing with a reaction rate. The evaluation of this particular functional was done by treating the numerator and the denominator functionals separately. This leads to three flux equations, one for forward flux, and two for adjoint fluxes. The advantages of this formulation over, and the equivalence of this formulation to, the conventional functional presented in the literature are described in detail. The flexibility of the proposed functional is demonstrated by using it to estimate the detection efficiency with four different methods: variational interpolation, conventional variational, variational extrapolation, and multi- reference-state variational. Results are presented for one-dimensional and two- dimensional problems. All results are compared with direct calculations. In all cases, the results show that the variational interpolational method and the multi- reference-state variational method are efficient and practically acceptable
Recommended from our members
Plant risk status information management system
The Plant Risk Status Information Management System (PRISIMS) is a PC program that presents information about a nuclear power plant's design, its operation, its technical specifications, and the results of the plant's probabilistic risk assessment (PRA) in a logically and easily accessible format. PRISIMS provides its user with unique information for integrating safety concerns into day-to-day operational decisions and/or long-range management planning
Palatini approach to 1/R gravity and its implications to the late Universe
By applying the Palatini approach to the 1/R-gravity model it is possible to
explain the present accelerated expansion of the Universe. Investigation of the
late Universe limiting case shows that: (i) due to the curvature effects the
energy-momentum tensor of the matter field is not covariantly conserved; (ii)
however, it is possible to reinterpret the curvature corrections as sources of
the gravitational field, by defining a modified energy-momentum tensor; (iii)
with the adoption of this modified energy-momentum tensor the Einstein's field
equations are recovered with two main modifications: the first one is the
weakening of the gravitational effects of matter whereas the second is the
emergence of an effective varying "cosmological constant"; (iv) there is a
transition in the evolution of the cosmic scale factor from a power-law scaling
to an asymptotically exponential scaling ; (v) the energy density of the matter field scales as ; (vi) the present age of the Universe and the
decelerated-accelerated transition redshift are smaller than the corresponding
ones in the CDM model.Comment: 5 pages and 2 figures. Accepted in PR
Brane Cosmology in the Background of D-Brane with NS B Field
We study the cosmological evolution of the four-dimensional universe on the
probe D3-brane in geodesic motion in the curved background of the source
Dp-brane with non-zero NS B field. The Friedman equations describing the
expansion of the brane universe are obtained and analyzed for various limits.
We elaborate on corrections to the cosmological evolution due to nonzero NS B
field.Comment: 13 pages, LaTeX, revised version with minor corrections to appear in
Phys. Rev.
Cosmological Effects of Radion Oscillations
We show that the redshift of pressureless matter density due to the expansion
of the universe generically induces small oscillations in the stabilized radius
of extra dimensions (the radion field). The frequency of these oscillations is
proportional to the mass of the radion and can have interesting cosmological
consequences. For very low radion masses () these low frequency oscillations lead to oscillations in
the expansion rate of the universe. The occurrence of acceleration periods
could naturally lead to a resolution of the coincidence problem, without need
of dark energy. Even though this scenario for low radion mass is consistent
with several observational tests it has difficulty to meet fifth force
constraints. If viewed as an effective Brans-Dicke theory it predicts
( is the number of extra dimensions), while
experiments on scales larger than imply . By deriving the
generalized Newtonian potential corresponding to a massive toroidally compact
radion we demonstrate that Newtonian gravity is modified only on scales smaller
than . Thus, these constraints do not apply for
(high frequency oscillations) corresponding to scales less than the current
experiments (). Even though these high frequency oscillations can not
resolve the coincidence problem they provide a natural mechanism for dark
matter generation. This type of dark matter has many similarities with the
axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and
some additional references include
Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity
This paper reports on our effort in modeling realistic astrophysical neutron
star binaries in general relativity. We analyze under what conditions the
conformally flat quasiequilibrium (CFQE) approach can generate
``astrophysically relevant'' initial data, by developing an analysis that
determines the violation of the CFQE approximation in the evolution of the
binary described by the full Einstein theory. We show that the CFQE assumptions
significantly violate the Einstein field equations for corotating neutron stars
at orbital separations nearly double that of the innermost stable circular
orbit (ISCO) separation, thus calling into question the astrophysical relevance
of the ISCO determined in the CFQE approach. With the need to start numerical
simulations at large orbital separation in mind, we push for stable and long
term integrations of the full Einstein equations for the binary neutron star
system. We demonstrate the stability of our numerical treatment and analyze the
stringent requirements on resolution and size of the computational domain for
an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.
Rip/singularity free cosmology models with bulk viscosity
In this paper we present two concrete models of non-perfect fluid with bulk
viscosity to interpret the observed cosmic accelerating expansion phenomena,
avoiding the introduction of exotic dark energy. The first model we inspect has
a viscosity of the form by
taking into account of the decelerating parameter q, and the other model is of
the form . We give out the
exact solutions of such models and further constrain them with the latest
Union2 data as well as the currently observed Hubble-parameter dataset (OHD),
then we discuss the fate of universe evolution in these models, which confronts
neither future singularity nor little/pseudo rip. From the resulting curves by
best fittings we find a much more flexible evolution processing due to the
presence of viscosity while being consistent with the observational data in the
region of data fitting. With the bulk viscosity considered, a more realistic
universe scenario is characterized comparable with the {\Lambda}CDM model but
without introducing the mysterious dark energy.Comment: 9 pages, 6 figures, submitted to EPJ-
- âŠ