21 research outputs found

    Exposure to Candida albicans Polarizes a T-Cell Driven Arthritis Model towards Th17 Responses, Resulting in a More Destructive Arthritis

    Get PDF
    BACKGROUND: Fungal components have been shown very effective in generating Th17 responses. We investigated whether exposure to a minute amount of C. albicans in the arthritic joint altered the local cytokine environment, leading to enhanced Th17 expansion and resulting in a more destructive arthritis. METHODOLOGY: Chronic SCW arthritis was induced by repeated injection with Streptococcus pyogenes (SCW) cell wall fragments into the knee joint of C57Bl/6 mice, alone or in combination with the yeast of C. albicans or Zymosan A. During the chronic phase of the arthritis, the cytokine levels, mRNA expression and histopathological analysis of the joints were performed. To investigate the phenotype of the IL-17 producing T-cells, synovial cells were isolated and analyzed by flowcytometry. PRINCIPAL FINDINGS: Intra-articular injection of either Zymosan A or C. albicans on top of the SCW injection both resulted in enhanced joint swelling and inflammation compared to the normal SCW group. However, only the addition of C. albicans during SCW arthritis resulted in severe chondrocyte death and enhanced destruction of cartilage and bone. Additionally, exposure to C. albicans led to increased IL-17 in the arthritic joint, which was accompanied by an increased synovial mRNA expression of T-bet and RORgammaT. Moreover, the C. albicans-injected mice had significantly more Th17 cells in the synovium, of which a large population also produced IFN-gamma. CONCLUSION: This study clearly shows that minute amounts of fungal components, like C. albicans, are very potent in interfering with the local cytokine environment in an arthritic joint, thereby polarizing arthritis towards a more destructive phenotype

    Disease Severity in Patients Infected with Leishmania mexicana Relates to IL-1Ξ²

    Get PDF
    Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1Ξ² (βˆ’511), CXCL8 (βˆ’251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1Ξ² by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1Ξ² and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1Ξ² (βˆ’511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CIβ€Š=β€Š(1.2, 8.7) and p-valueβ€Š=β€Š0.0167), indicating that IL-1Ξ² (βˆ’511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1Ξ² by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1Ξ² in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1Ξ² was confined to the cells. These data suggest that IL-1Ξ² possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls

    The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER.

    Get PDF
    Infection with Mycobacterium ulcerans is characterised by tissue necrosis and immunosuppression due to mycolactone, the necessary and sufficient virulence factor for Buruli ulcer disease pathology. Many of its effects are known to involve down-regulation of specific proteins implicated in important cellular processes, such as immune responses and cell adhesion. We have previously shown mycolactone completely blocks the production of LPS-dependent proinflammatory mediators post-transcriptionally. Using polysome profiling we now demonstrate conclusively that mycolactone does not prevent translation of TNF, IL-6 and Cox-2 mRNAs in macrophages. Instead, it inhibits the production of these, along with nearly all other (induced and constitutive) proteins that transit through the ER. This is due to a blockade of protein translocation and subsequent degradation of aberrantly located protein. Several lines of evidence support this transformative explanation of mycolactone function. First, cellular TNF and Cox-2 can be once more detected if the action of the 26S proteasome is inhibited concurrently. Second, restored protein is found in the cytosol, indicating an inability to translocate. Third, in vitro translation assays show mycolactone prevents the translocation of TNF and other proteins into the ER. This is specific as the insertion of tail-anchored proteins into the ER is unaffected showing that the ER remains structurally intact. Fourth, metabolic labelling reveals a near-complete loss of glycosylated and secreted proteins from treated cells, whereas cytosolic proteins are unaffected. Notably, the profound lack of glycosylated and secreted protein production is apparent in a range of different disease-relevant cell types. These studies provide a new mechanism underlying mycolactone's observed pathological activities both in vitro and in vivo. Mycolactone-dependent inhibition of protein translocation into the ER not only explains the deficit of innate cytokines, but also the loss of membrane receptors, adhesion molecules and T-cell cytokines that drive the aetiology of Buruli ulcer

    A Novel Role for the NLRC4 Inflammasome in Mucosal Defenses against the Fungal Pathogen Candida albicans

    Get PDF
    Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1Ξ² production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection
    corecore