37 research outputs found

    Comparing the Functional Independence Measure and the interRAI/MDS for use in the functional assessment of older adults: a review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rehabilitation of older persons is often complicated by increased frailty and medical complexity - these in turn present challenges for the development of health information systems. Objective investigation and comparison of the effectiveness of geriatric rehabilitation services requires information systems that are comprehensive, reliable, valid, and sensitive to clinically relevant changes in older persons. The Functional Independence Measure is widely used in rehabilitation settings - in Canada this is used as the central component of the National Rehabilitation Reporting System of the Canadian Institute of Health Information. An alternative system has been developed by the interRAI consortium. We conducted a literature review to compare the development and measurement properties of these two systems.</p> <p>Methods</p> <p>English language literature published between 1983 (initial development of the FIM) and 2008 was searched using Medline and CINAHL databases, and the reference lists of retrieved articles. Relevant articles were summarized and charted using the criteria proposed by Streiner. Additionally, attention was paid to the ability of the two systems to address issues particularly relevant to older rehabilitation clients, such as medical complexity, comorbidity, and responsiveness to small but clinically meaningful improvements.</p> <p>Results</p> <p>In total, 66 articles were found that met the inclusion criteria. The majority of FIM articles studied inpatient rehabilitation settings; while the majority of interRAI/MDS articles focused on nursing home settings. There is evidence supporting the reliability of both instruments. There were few articles that investigated the construct validity of the interRAI/MDS.</p> <p>Conclusion</p> <p><b>A</b>dditional psychometric research is needed on both the FIM and MDS, especially with regard to their use in different settings and with different client groups.</p

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF
    The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points

    Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

    Get PDF

    Morphologically homogeneous red blood cells present a heterogeneous response to hormonal stimulation

    Get PDF
    Red blood cells (RBCs) are among the most intensively studied cells in natural history, elucidating numerous principles and ground-breaking knowledge in cell biology. Morphologically, RBCs are largely homogeneous, and most of the functional studies have been performed on large populations of cells, masking putative cellular variations. We studied human and mouse RBCs by live-cell video imaging, which allowed single cells to be followed over time. In particular we analysed functional responses to hormonal stimulation with lysophosphatidic acid (LPA), a signalling molecule occurring in blood plasma, with the Ca(2+) sensor Fluo-4. Additionally, we developed an approach for analysing the Ca(2+) responses of RBCs that allowed the quantitative characterization of single-cell signals. In RBCs, the LPA-induced Ca(2+) influx showed substantial diversity in both kinetics and amplitude. Also the age-classification was determined for each particular RBC and consecutively analysed. While reticulocytes lack a Ca(2+) response to LPA stimulation, old RBCs approaching clearance generated robust LPA-induced signals, which still displayed broad heterogeneity. Observing phospatidylserine exposure as an effector mechanism of intracellular Ca(2+) revealed an even increased heterogeneity of RBC responses. The functional diversity of RBCs needs to be taken into account in future studies, which will increasingly require single-cell analysis approaches. The identified heterogeneity in RBC responses is important for the basic understanding of RBC signalling and their contribution to numerous diseases, especially with respect to Ca(2+) influx and the associated pro-thrombotic activity
    corecore