7 research outputs found

    Endometrial Cancer Molecular Risk Stratification is Equally Prognostic for Endometrioid Ovarian Carcinoma.

    Get PDF
    PURPOSE: Endometrioid ovarian carcinoma (ENOC) is generally associated with a more favorable prognosis compared with other ovarian carcinomas. Nonetheless, current patient treatment continues to follow a "one-size-fits-all" approach. Even though tumor staging offers stratification, personalized treatments remain elusive. As ENOC shares many clinical and molecular features with its endometrial counterpart, we sought to investigate The Cancer Genome Atlas-inspired endometrial carcinoma (EC) molecular subtyping in a cohort of ENOC. EXPERIMENTAL DESIGN: IHC and mutation biomarkers were used to segregate 511 ENOC tumors into four EC-inspired molecular subtypes: low-risk POLE mutant (POLEmut), moderate-risk mismatch repair deficient (MMRd), high-risk p53 abnormal (p53abn), and moderate-risk with no specific molecular profile (NSMP). Survival analysis with established clinicopathologic and subtype-specific features was performed. RESULTS: A total of 3.5% of cases were POLEmut, 13.7% MMRd, 9.6% p53abn, and 73.2% NSMP, each showing distinct outcomes (P < 0.001) and survival similar to observations in EC. Median OS was 18.1 years in NSMP, 12.3 years in MMRd, 4.7 years in p53abn, and not reached for POLEmut cases. Subtypes were independent of stage, grade, and residual disease in multivariate analysis. CONCLUSIONS: EC-inspired molecular classification provides independent prognostic information in ENOC. Our findings support investigating molecular subtype-specific management recommendations for patients with ENOC; for example, subtypes may provide guidance when fertility-sparing treatment is desired. Similarities between ENOC and EC suggest that patients with ENOC may benefit from management strategies applied to EC and the opportunity to study those in umbrella trials

    Validated biomarker assays confirm ARID1A loss is confounded with MMR deficiency, CD8 TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas

    No full text
    ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1,623 endometriosis-associated ovarian carcinomas, including 1,078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TIL), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOC and 25% of ENOC. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012), and associated with MMRd (p < 0.001), and presence of CD8+ TIL (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOC we also observed an association between ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association between ARID1A loss, CD8+ TIL, and age, appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. This article is protected by copyright. All rights reserved

    Sarcoma classification by DNA methylation profiling

    Get PDF
    Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications

    CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study.

    No full text
    BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC
    corecore