23 research outputs found

    Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients

    Get PDF
    Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated. Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks. Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males 73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616 to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to 3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand factor and Fibroblast Growth Factor-23, remained unchanged. Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23. Trial Registration: ClinicalTrials.gov NCT0200571

    Curcumin supplementation could improve diabetes-induced endothelial dysfunction associated with decreased vascular superoxide production and PKC inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin, an Asian spice and food-coloring agent, is known for its anti-oxidant properties. We propose that curcumin can improve diabetes-induced endothelial dysfunction through superoxide reduction.</p> <p>Methods</p> <p>Diabetes (DM) was induced in rats by streptozotocin (STZ). Daily curcumin oral feeding was started six weeks after the STZ injection. Twelve weeks after STZ injection, mesenteric arteriolar responses were recorded in real time using intravital fluorescence videomicroscopy. Superoxide and vascular protein kinase C (PKC-βII) were examined by hydroethidine and immunofluorescence, respectively.</p> <p>Results</p> <p>The dilatory response to acetylcholine (ACh) significantly decreased in DM arterioles as compared to control arterioles. There was no difference among groups when sodium nitroprusside (SNP) was used. ACh responses were significantly improved by both low and high doses (30 and 300 mg/kg, respectively) of curcumin supplementation. An oxygen radical-sensitive fluorescent probe, hydroethidine, was used to detect intracellular superoxide anion (O<sub>2</sub><sup>●-</sup>) production. O<sub>2</sub><sup>●- </sup>production was markedly increased in DM arterioles, but it was significantly reduced by supplementation of either low or high doses of curcumin. In addition, with a high dose of curcumin, diabetes-induced vascular PKC-βII expression was diminished.</p> <p>Conclusion</p> <p>Therefore, it is suggested that curcumin supplementation could improve diabetes-induced endothelial dysfunction significantly in relation to its potential to decrease superoxide production and PKC inhibition.</p
    corecore