13 research outputs found
The motion of point particles in curved spacetime
This review is concerned with the motion of a point scalar charge, a point
electric charge, and a point mass in a specified background spacetime. In each
of the three cases the particle produces a field that behaves as outgoing
radiation in the wave zone, and therefore removes energy from the particle. In
the near zone the field acts on the particle and gives rise to a self-force
that prevents the particle from moving on a geodesic of the background
spacetime. The field's action on the particle is difficult to calculate because
of its singular nature: the field diverges at the position of the particle. But
it is possible to isolate the field's singular part and show that it exerts no
force on the particle -- its only effect is to contribute to the particle's
inertia. What remains after subtraction is a smooth field that is fully
responsible for the self-force. Because this field satisfies a homogeneous wave
equation, it can be thought of as a free (radiative) field that interacts with
the particle; it is this interaction that gives rise to the self-force. The
mathematical tools required to derive the equations of motion of a point scalar
charge, a point electric charge, and a point mass in a specified background
spacetime are developed here from scratch. The review begins with a discussion
of the basic theory of bitensors (part I). It then applies the theory to the
construction of convenient coordinate systems to chart a neighbourhood of the
particle's word line (part II). It continues with a thorough discussion of
Green's functions in curved spacetime (part III). The review concludes with a
detailed derivation of each of the three equations of motion (part IV).Comment: LaTeX2e, 116 pages, 10 figures. This is the final version, as it will
appear in Living Reviews in Relativit
Measuring the gravitational field in General Relativity: From deviation equations and the gravitational compass to relativistic clock gradiometry
How does one measure the gravitational field? We give explicit answers to
this fundamental question and show how all components of the curvature tensor,
which represents the gravitational field in Einstein's theory of General
Relativity, can be obtained by means of two different methods. The first method
relies on the measuring the accelerations of a suitably prepared set of test
bodies relative to the observer. The second methods utilizes a set of suitably
prepared clocks. The methods discussed here form the basis of relativistic
(clock) gradiometry and are of direct operational relevance for applications in
geodesy.Comment: To appear in "Relativistic Geodesy: Foundations and Application", D.
Puetzfeld et. al. (eds.), Fundamental Theories of Physics, Springer 2018, 52
pages, in print. arXiv admin note: text overlap with arXiv:1804.11106,
arXiv:1511.08465, arXiv:1805.1067
An algorithm for computing geometric relative velocities through Fermi and observational coordinates
A spacetime description of relativistic media
discussion is given of relativistic balance laws that may be used to construct models of material media with spin and electromagnetic properties, interacting with general background electromagnetic fields and gravitation described by non-Riemannian geometries. The general framework offers an approximation scheme for modelling relativistic media by supplementing the balance laws with conditions that convert them into an involutive differential system