7 research outputs found

    Humoral immune response to adenovirus induce tolerogenic bystander dendritic cells that promote generation of regulatory T cells.

    Get PDF
    Following repeated encounters with adenoviruses most of us develop robust humoral and cellular immune responses that are thought to act together to combat ongoing and subsequent infections. Yet in spite of robust immune responses, adenoviruses establish subclinical persistent infections that can last for decades. While adenovirus persistence pose minimal risk in B-cell compromised individuals, if T-cell immunity is severely compromised reactivation of latent adenoviruses can be life threatening. This dichotomy led us to ask how anti-adenovirus antibodies influence adenovirus T-cell immunity. Using primary human blood cells, transcriptome and secretome profiling, and pharmacological, biochemical, genetic, molecular, and cell biological approaches, we initially found that healthy adults harbor adenovirus-specific regulatory T cells (Tregs). As peripherally induced Tregs are generated by tolerogenic dendritic cells (DCs), we then addressed how tolerogenic DCs could be created. Here, we demonstrate that DCs that take up immunoglobulin-complexed (IC)-adenoviruses create an environment that causes bystander DCs to become tolerogenic. These adenovirus antigen loaded tolerogenic DCs can drive naïve T cells to mature into adenovirus-specific Tregs. Our study reveals a mechanism by which an antiviral humoral responses could, counterintuitively, favor virus persistence

    Paradoxical expression of IL-28B mRNA in peripheral blood in human T-cell leukemia virus Type-1 mono-infection and co-infection with hepatitis C Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type-1 (HTLV-1) carriers co-infected with and hepatitis C virus (HCV) have been known to be at higher risk of their related diseases than mono-infected individuals. The recent studies clarified that IL-28B polymorphism rs8099917 is associated with not only the HCV therapeutic response by IFN, but also innate immunity and antiviral activity. The aim of our research was to clarify study whether IL-28B gene polymorphism (rs8099917) is associated with HTLV-1/HCV co-infection.</p> <p>Results</p> <p>The genotyping and viral-serological analysis for 340 individuals showed that IL-28B genotype distribution of rs8099917 SNP did not differ significantly by respective viral infection status. However, the IL-28B mRNA expression level was 3.8 fold higher in HTLV-1 mono-infection than HTLV-1/HCV co-infection. The high expression level was associated with TT (OR, 6.25), whiles the low expression was associated with co-infection of the two viruses (OR, 9.5). However, there was no association between down-regulation and ATL development (OR, 0.8).</p> <p>Conclusion</p> <p>HTLV-1 mono-infection up-regulates the expression of IL-28B transcripts in genotype-dependent manner, whiles HTLV-1/HCV co-infection down-regulates regardless of ATL development.</p

    MIF Participates in Toxoplasma gondii-Induced Pathology Following Oral Infection

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii. METHODOLOGY/PRINCIPAL FINDINGS: Mif deficient (Mif(-/-)) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif(-/-) mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif(-/-) mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif(-/-) mice compared to wild-type mice. CONCLUSION/SIGNIFICANCE: In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death
    corecore