18 research outputs found

    Genetically-Based Olfactory Signatures Persist Despite Dietary Variation

    Get PDF
    Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC). A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet), they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs) extracted by solid phase microextraction (SPME) and analyzed by gas chromatography/mass spectrometry (GC/MS) are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification) MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects

    Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas Aeruginosa

    Get PDF
    Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa

    Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development

    Get PDF
    Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified

    Selective and validated spectrophotometric methods for the determination of nicorandil in pharmaceutical formulations

    No full text
    Two simple and sensitive validated spectrophotometric methods have been described for the assay of nicorandil in drug formulations. Method A is based on the reaction of the drug with phloroglucinol-sulfanilic acid reagent in sulfuric acid medium to give yellow-colored product, which absorbs maximally at 425 nm. Method B uses the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with DL-3,4-dihydroxyphenylalanine (DL-dopa) in the presence of nicorandil as oxidant in sulfuric acid medium to form an intensely colored product having maximum absorbance at 530 nm. Beer's law is obeyed in the concentration range 2.5 to 50.0 and 1.0 to 15.0 μg mL−1 with methods A and B, respectively. Both methods have been successfully applied for the analysis of drug in pharmaceutical formulations. The reliability and the performance of the proposed methods are established by point and interval hypothesis and through recovery studies. The experimental true bias of all samples is smaller than ±2%

    Chronic Exposure of Cat Odor Enhances Aggression, Urinary Attractiveness and Sex Pheromones of Mice

    No full text
    To test whether predator odor exposure negatively affects the behavior of prey, we exposed three groups of male house mice (Mus musculus) to the odors of cat (Felis catus) urine, rabbit (Oryctolagus cuniculus) urine and water (control), respectively, for consecutive 58 days and investigated how the treatments affected the response, aggressiveness, dominance, urinary attractiveness to females and pheromone composition of male mice. Compared to mice exposed to rabbit urine or water, those exposed to cat odor did not show any response habituation to the cat odor and became more aggressive, increased mark urine production and were more attractive to females when the latter were tested with their urine. Furthermore, gas chromatography coupled with mass spectrometry analysis revealed coincident elevations of the well-known male pheromones, E,E-α-farnesene, E-β-farnesene, R,R-dehydro-exo-brevicomin or S-2-sec-butyl-dihydrothiazole. In addition, rabbit urine exposure increased urinary attractiveness to females and pheromonal levels of the males in comparison with the mice exposed to water. This could be related to olfactory enrichment of heterospecific chemosignals, suggesting that predator odors were more beneficial. In light of these anti-intuitional findings in the chemical interaction between cats and mice, we conclude that predator odor affects prey more profoundly than previously believed and that its impact may not always be negative
    corecore