58 research outputs found

    DNA adducts in fish following an oil spill exposure

    Get PDF
    On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill

    The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice

    Get PDF
    The Centre for Ageing & Vitality is funded by the MRC and BBSRC (Grant Reference MR/L016354/1). This work was further supported by the Centre for Integrated Systems Biology of Ageing and Nutrition funded by the BBSRC and EPSRC (G0700718). Part of the work was supported by BBSRC Grant BB/K010867/1

    T (null )and M (null )genotypes of the glutathione S-transferase gene are risk factor for CAD independent of smoking

    Get PDF
    BACKGROUND: The association of the deletion in GSTT1 and GSTM1 genes with coronary artery disease (CAD) among smokers is controversial. In addition, no such investigation has previously been conducted among Arabs. METHODS: We genotyped 1054 CAD patients and 762 controls for GSTT1 and GSTM1 deletion by multiplex polymerase chain reaction. Both CAD and controls were Saudi Arabs. RESULTS: In the control group (n = 762), 82.3% had the T (wild )M (wild)genotype, 9% had the T(wild )M (null), 2.4% had the T(null )M (wild )and 6.3% had the T(null )M (null )genotype. Among the CAD group (n = 1054), 29.5% had the T(wild )M (wild )genotype, 26.6% (p < .001) had the T(wild )M (null), 8.3% (p < .001) had the T(null )M (wild )and 35.6% (p < .001) had the T(null )M (null )genotype, indicating a significant association of the T(wild )M (null), T(null )M (wild )and T(null )M (null )genotypes with CAD. Univariate analysis also showed that smoking, age, hypercholesterolemia and hypertriglyceridemia, diabetes mellitus, family history of CAD, hypertension and obesity are all associated with CAD, whereas gender and myocardial infarction are not. Binary logistic regression for smoking and genotypes indicated that only M (null )and T(null)are interacting with smoking. However, further subgroup analysis stratifying the data by smoking status suggested that genotype-smoking interactions have no effect on the development of CAD. CONCLUSION: GSTT1 and GSTM1 null-genotypes are risk factor for CAD independent of genotype-smoking interaction

    ANALYSIS OF LIFE INSURANCE INVESTMENT COMPOSITION

    Get PDF
    Economic recession and global mettle down have brought the question of insurance company investment to the forefront. Growing attention has shifted to the pattern of investments by the insurance and question of how to evaluate such investments. The aim of this research is to evaluate investment compositions which are made by life insurance companies in Indonesia, as well as to know the effects on the performance of Insurance companies

    Menopausal Status Modifies Breast Cancer Risk Associated with the Myeloperoxidase (MPO) G463A Polymorphism in Caucasian Women: A Meta-Analysis

    Get PDF
    BACKGROUND: Breast cancer susceptibility may be modulated partly through polymorphisms in oxidative enzymes, one of which is myeloperoxidase (MPO). Association of the low transcription activity variant allele A in the G463A polymorphism has been investigated for its association with breast cancer risk, considering the modifying effects of menopausal status and antioxidant intake levels of cases and controls. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a more precise estimate of association using the odds ratio (OR), we performed a meta-analysis of 2,975 cases and 3,427 controls from three published articles of Caucasian populations living in the United States. Heterogeneity among studies was tested and sensitivity analysis was applied. The lower transcriptional activity AA genotype of MPO in the pre-menopausal population showed significantly reduced risk (OR 0.56-0.57, p = 0.03) in contrast to their post-menopausal counterparts which showed non-significant increased risk (OR 1.14; p = 0.34-0.36). High intake of antioxidants (OR 0.67-0.86, p = 0.04-0.05) and carotenoids (OR 0.68-0.86, p = 0.03-0.05) conferred significant protection in the women. Stratified by menopausal status, this effect was observed in pre-menopausal women especially those whose antioxidant intake was high (OR 0.42-0.69, p = 0.04). In post-menopausal women, effect of low intake elicited susceptibility (OR 1.19-1.67, p = 0.07-0.17) to breast cancer. CONCLUSIONS/SIGNIFICANCE: Based on a homogeneous Caucasian population, the MPO G463A polymorphism places post-menopausal women at risk for breast cancer, where this effect is modified by diet

    Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This investigation offers insights into system-wide pathological processes induced in response to cigarette smoke exposure by determining its influences at the gene expression level.</p> <p>Methods</p> <p>We obtained genome-wide quantitative transcriptional profiles from 1,240 individuals from the San Antonio Family Heart Study, including 297 current smokers. Using lymphocyte samples, we identified 20,413 transcripts with significantly detectable expression levels, including both known and predicted genes. Correlation between smoking and gene expression levels was determined using a regression model that allows for residual genetic effects.</p> <p>Results</p> <p>With a conservative false-discovery rate of 5% we identified 323 unique genes (342 transcripts) whose expression levels were significantly correlated with smoking behavior. These genes showed significant over-representation within a range of functional categories that correspond well with known smoking-related pathologies, including immune response, cell death, cancer, natural killer cell signaling and xenobiotic metabolism.</p> <p>Conclusions</p> <p>Our results indicate that not only individual genes but entire networks of gene interaction are influenced by cigarette smoking. This is the largest <it>in vivo </it>transcriptomic epidemiological study of smoking to date and reveals the significant and comprehensive influence of cigarette smoke, as an environmental variable, on the expression of genes. The central importance of this manuscript is to provide a summary of the relationships between gene expression and smoking in this exceptionally large cross-sectional data set.</p

    Antioxidant therapies in COPD

    Get PDF
    Oxidative stress is an important feature in the pathogenesis of COPD. Targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to be beneficial in the treatment of COPD. Antioxidant agents such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn), dietary polyphenols (curcumin, resveratrol, green tea, catechins/quercetin), erdosteine, and carbocysteine lysine salt, all have been reported to control nuclear factor-kappaB (NF-κ B) activation, regulation of glutathione biosynthesis genes, chromatin remodeling, and hence inflammatory gene expression. Specific spin traps such as α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo. Since a variety of oxidants, free radicals, and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants will be effective in the treatment of COPD. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in COPD are discussed
    corecore