58 research outputs found

    Serum biomarkers associated with SARS-CoV-2 severity

    Get PDF
    Immunity with SARS-CoV-2 infection during the acute phase is not sufficiently well understood to differentiate mild from severe cases and identify prognostic markers. We evaluated the immune response profile using a total of 71 biomarkers in sera from patients with SARS-CoV-2 infection, confirmed by RT-PCR and controls. We correlated biological marker levels with negative control (C) asymptomatic (A), nonhospitalized (mild cases-M), and hospitalized (severe cases-S) groups. Among angiogenesis markers, we identified biomarkers that were more frequently elevated in severe cases when compared to the other groups (C, A, and M). Among cardiovascular diseases, there were biomarkers with differences between the groups, with D-dimer, GDF-15, and sICAM-1 higher in the S group. The levels of the biomarkers Myoglobin and P-Selectin were lower among patients in group M compared to those in groups S and A. Important differences in cytokines and chemokines according to the clinical course were identified. Severe cases presented altered levels when compared to group C. This study helps to characterize biological markers related to angiogenesis, growth factors, heart disease, and cytokine/chemokine production in individuals infected with SARS-CoV-2, offering prognostic signatures and a basis for understanding the biological factors in disease severity

    AHR2 Mutant Reveals Functional Diversity of Aryl Hydrocarbon Receptors in Zebrafish

    Get PDF
    The aryl hydrocarbon receptor (AHR) is well known for mediating the toxic effects of TCDD and has been a subject of intense research for over 30 years. Current investigations continue to uncover its endogenous and regulatory roles in a wide variety of cellular and molecular signaling processes. A zebrafish line with a mutation in ahr2 (ahr2hu3335), encoding the AHR paralogue responsible for mediating TCDD toxicity in zebrafish, was developed via Targeting Induced Local Lesions IN Genomes (TILLING) and predicted to express a non-functional AHR2 protein. We characterized AHR activity in the mutant line using TCDD and leflunomide as toxicological probes to investigate function, ligand binding and CYP1A induction patterns of paralogues AHR2, AHR1A and AHR1B. By evaluating TCDD-induced developmental toxicity, mRNA expression changes and CYP1A protein in the AHR2 mutant line, we determined that ahr2hu3335 zebrafish are functionally null. In silico modeling predicted differential binding of TCDD and leflunomide to the AHR paralogues. AHR1A is considered a non-functional pseudogene as it does not bind TCCD or mediate in vivo TCDD toxicity. Homology modeling, however, predicted a ligand binding conformation of AHR1A with leflunomide. AHR1A-dependent CYP1A immunohistochemical expression in the liver provided in vivo confirmation of the in silico docking studies. The ahr2hu3335 functional knockout line expands the experimental power of zebrafish to unravel the role of the AHR during development, as well as highlights potential activity of the other AHR paralogues in ligand-specific toxicological responses
    • …
    corecore