91 research outputs found

    The nature of NV absorbers at high redshift

    Full text link
    We present a study of NV absorption systems at 1.5 < z < 2.5 in the optical spectra of 19 QSOs. Our analysis includes both absorbers arising from the intergalactic medium as well as systems in the vicinity of the background quasar. We construct detailed photoionization models to study the physical conditions and abundances in the absorbers and to constrain the spectral hardness of the ionizing radiation. The rate of incidence for intervening NV components is dN/dz = 3.38 +/- 0.43, corresponding to dN/dX = 1.10 +/- 0.14. The column density distribution function is fitted by the slope beta = 1.89 +/- 0.22, consistent with measurements for CIV and OVI. The narrow line widths (b_NV ~ 6 km/s) imply photoionization rather than collisions as dominating ionization process. The column densities of CIV and NV are correlated but show different slopes for intervening and associated absorbers, which indicates different ionizing spectra. Associated systems are found to be more metal-rich, denser, and more compact than intervening absorbers. This conclusion is independent of the adopted ionizing radiation. For the intervening NV systems we find typical values of [C/H] ~ -0.6 and n_H ~ 10^-3.6 cm^-3, and sizes of a few kpc, while for associated NV absorbers we obtain [C/H] ~ +0.7, n_H ~ 10^-2.8 cm^-3, and sizes of several 10 pc. The abundance of nitrogen relative to carbon [N/C] and alpha-elements like oxygen and silicon [N/alpha] is correlated with [N/H], indicating the enrichment by secondary nitrogen. The larger scatter in [N/alpha] in intervening systems suggests an inhomogeneous enrichment of the IGM. There is an anti-correlation between [N/alpha] and [alpha/C], which could be used to constrain the initial mass function of the carbon- and nitrogen-producing stellar population.Comment: accepted by A&A, revised versio

    Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferators-activated receptor alpha (PPARα) activation modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of short-term administration of fenofibrate, a PPARα agonist, on proinflammatory cytokines, apoptosis, and hepatocellular damage in cholestasis.</p> <p>Methods</p> <p>Forty male Wistar rats were randomly divided into four groups: I = sham operated, II = bile duct ligation (BDL), III = BDL + vehicle (gum Arabic), IV = BDL + fenofibrate (100 mg/kg/day). All rats were sacrificed on 7<sup>th </sup>day after obtaining blood samples and liver tissue. Total bilirubin, aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), gamma-glutamyl transferase, (GGT), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1 β), and total bile acid (TBA) in serum, and liver damage scores; portal inflammation, necrosis, bile duct number, in liver tissue were evaluated. Apoptosis in liver was also assessed by immunohistochemical staining.</p> <p>Results</p> <p>Fenofibrate administration significantly reduced serum total bilirubin, AST, ALT, ALP, and GGT, TNF-α, IL-1 β levels, and TBA (<it>P </it>< 0.01). Hepatic portal inflammation, hepatic necrosis, number of the bile ducts and apoptosis in rats with BDL were more prominent than the sham-operated animals (<it>P </it>< 0.01). PPARα induction improved all histopathologic parameters (<it>P </it>< 0.01), except for the number of the bile duct, which was markedly increased by fenofibrate therapy (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Short-term administration of fenofibrate to the BDL rats exerts beneficial effects on hepatocellular damage and apoptosis.</p

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate
    corecore