34 research outputs found

    Activation of the dopamine 1 and dopamine 5 receptors increase skeletal muscle mass and force production under non-atrophying and atrophying conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Control of skeletal muscle mass and force production is a complex physiological process involving numerous regulatory systems. Agents that increase skeletal muscle cAMP levels have been shown to modulate skeletal muscle mass and force production. The dopamine 1 receptor and its closely related homolog, the dopamine 5 receptor, are G-protein coupled receptors that are expressed in skeletal muscle and increase cAMP levels when activated. Thus we hypothesize that activation of the dopamine 1 and/or 5 receptor will increase skeletal muscle cAMP levels thereby modulating skeletal muscle mass and force production.</p> <p>Methods</p> <p>We treated isolated mouse tibialis anterior (TA) and medial gastrocnemius (MG) muscles in tissue bath with the selective dopamine 1 receptor and dopamine 5 receptor agonist SKF 81297 to determine if activation of skeletal muscle dopamine 1 and dopamine 5 receptors will increase cAMP. We dosed wild-type mice, dopamine 1 receptor knockout mice and dopamine 5 receptor knockout mice undergoing casting-induced disuse atrophy with SKF 81297 to determine if activation of the dopamine 1 and dopamine 5 receptors results in hypertrophy of non-atrophying skeletal muscle and preservation of atrophying skeletal muscle mass and force production.</p> <p>Results</p> <p>In tissue bath, isolated mouse TA and MG muscles responded to SKF 81297 treatment with increased cAMP levels. Treating wild-type mice with SKF 81297 reduced casting-induced TA and MG muscle mass loss in addition to increasing the mass of non-atrophying TA and MG muscles. In dopamine 1 receptor knockout mice, extensor digitorum longus (EDL) and soleus muscle mass and force was not preserved during casting with SKF 81297 treatment, in contrast to significant preservation of casted wild-type mouse EDL and soleus mass and EDL force with SKF 81297 treatment. Dosing dopamine 5 receptor knockout mice with SKF 81297 did not significantly preserve EDL and soleus muscle mass and force although wild-type mouse EDL mass and force was significantly preserved SKF 81297 treatment.</p> <p>Conclusions</p> <p>These data demonstrate for the first time that treatment with a dopamine 1/5 receptor agonist results in (1) significant preservation of EDL, TA, MG and soleus muscle mass and EDL muscle force production during periods of atrophy and (2) hypertrophy of TA and MG muscle. These effects appear to be mainly mediated by both the dopamine 1 and dopamine 5 receptors.</p

    Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone

    Get PDF
    Dopamine is a neurotransmitter that has been implicated in processes as diverse as reward, addiction, control of coordinated movement, metabolism and hormonal secretion. Correspondingly, dysregulation of the dopaminergic system has been implicated in diseases such as schizophrenia, Parkinson's disease, depression, attention deficit hyperactivity disorder, and nausea and vomiting. The actions of dopamine are mediated by a family of five G-protein-coupled receptors. The D2 dopamine receptor (DRD2) is the primary target for both typical and atypical antipsychotic drugs, and for drugs used to treat Parkinson's disease. Unfortunately, many drugs that target DRD2 cause serious and potentially life-threatening side effects due to promiscuous activities against related receptors. Accordingly, a molecular understanding of the structure and function of DRD2 could provide a template for the design of safer and more effective medications. Here we report the crystal structure of DRD2 in complex with the widely prescribed atypical antipsychotic drug risperidone. The DRD2-risperidone structure reveals an unexpected mode of antipsychotic drug binding to dopamine receptors, and highlights structural determinants that are essential for the actions of risperidone and related drugs at DRD2. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

    5-HT6R can do it alone

    No full text

    Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy

    No full text
    The majority of antidepressant drugs act by increasing synaptic serotonin levels in the brain. Genetic variation in serotonin-related genes may therefore influence antidepressant efficacy. In this study, nine polymorphisms in four serotonin receptor genes (HTR1B, HTR2A, HTR5A and HTR6) and the serotonin transporter gene (SLC6A4) were analysed to investigate their influence on antidepressant response in a well-characterized unipolar depressive population (n=166) following a protocolized treatment regimen. 5-HTTLPR short-allele homozygotes were significantly associated with both remission (odds ratios (OR)=4.00, P=0.04) and response (OR=5.06, P=0.02) following second switch treatment, with a similar trend observed following initial treatment and paroxetine therapy. Following initial treatment, unipolar patients homozygous for the SLC6A4 intron 2 repeat polymorphism were significantly associated with lack of remission (OR=0.38, P=0.02) and lack of response (OR=0.42, P=0.01). Additionally, the HTR2A C(1354)T polymorphism showed an association with remission (OR=7.50, P=0.002) and response (OR=5.25, P=0.01) following paroxetine therapy. These results suggest that genetically determined variation in serotonin receptor genes makes a significant contribution to the efficacy of commonly prescribed antidepressant drugs
    corecore