32 research outputs found

    Pentalogy of Cantrell: two patients and a review to determine prognostic factors for optimal approach

    Get PDF
    Two patients with incomplete pentalogy of Cantrell are described. The first was a girl with a large omphalocele with evisceration of the heart, liver and intestines with an intact sternum. Echocardiography showed profound intracardiac defects. The girl died 33 h after birth. The second patient was a female fetus with ectopia cordis (EC) without intracardiac anomalies; a large omphalocele with evisceration of the heart, stomach, spleen and liver; a hypoplastic sternum and rib cage; and a scoliosis. The pregnancy was terminated. A review of patients described in the literature is presented with the intention of finding prognostic factors for an optimal approach to patients with the pentalogy of Cantrell. In conclusion the prognosis seems to be poorer in patients with the complete form of pentalogy of Cantrell, EC, and patients with associated anomalies. Intracardial defects do not seem to be a prognostic factor

    Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    Get PDF
    INTRODUCTION: Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. METHODS: Mice were ventilated at low tidal volume V(T) = 8 mL/kg or high tidal volume V(T) = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cm H(2)O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. RESULTS: MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. CONCLUSIONS: Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation

    Linking lung function and inflammatory responses in ventilator-induced lung injury

    Full text link
    Despite decades of research, the mechanisms of ventilator-induced lung injury are poorly understood. We used strain-dependent responses to mechanical ventilation in mice to identify associations between mechanical and inflammatory responses in the lung. BALB/c, C57BL/6, and 129/Sv mice were ventilated using a protective [low tidal volume and moderate positive end-expiratory pressure (PEEP) and recruitment maneuvers] or injurious (high tidal volume and zero PEEP) ventilation strategy. Lung mechanics and lung volume were monitored using the forced oscillation technique and plethysmography, respectively. Inflammation was assessed by measuring numbers of inflammatory cells, cytokine (IL-6, IL-1β, and TNF-α) levels, and protein content of the BAL. Principal components factor analysis was used to identify independent associations between lung function and inflammation. Mechanical and inflammatory responses in the lung were dependent on ventilation strategy and mouse strain. Three factors were identified linking 1) pulmonary edema, protein leak, and macrophages, 2) atelectasis, IL-6, and TNF-α, and 3) IL-1β and neutrophils, which were independent of responses in lung mechanics. This approach has allowed us to identify specific inflammatory responses that are independently associated with overstretch of the lung parenchyma and loss of lung volume. These data provide critical insight into the mechanical responses in the lung that drive local inflammation in ventilator-induced lung injury and the basis for future mechanistic studies in this field

    Anaesthesia and Pentalogy of Cantrell

    No full text
    corecore