36 research outputs found
Preferential Occupancy of R2 Retroelements on the B Chromosomes of the Grasshopper Eyprepocnemis plorans
R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements.This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917) and Plan Andaluz de Investigacion (CVI-6649), and was partially performed by FEDER funds and a grant from the National Institutes of Health (GM42790)
A simple thermodynamic model for the solubility of thermolabile solids in supercritical fluids
An equation-of-state (EoS) scheme to correlate the solubility of solids in supercritical fluids is presented. The solute fugacity coefficient is obtained using the pure-solvent compressibility factor, and empirical solute-to-solvent parameter ratios of cohesion factors and covolumes. The proposed method is simpler than EoS conventional calculations since no iteration is required. We retain the link to classical cubic EoS and mixing rules and showcase the application employing both the Redlich-Kwong and Peng-Robinson EoS. The method uses two adjustable parameters, which are computed from experimental data for several binary systems and used to predict solubilities. The results have been favorably compared to those computed by other methods. The advantage of EoS-based models over empirical ones has been emphasized for cases where the solubilities are extrapolated beyond the range of experimental data. The proposal is advantageous for correlating solubility of thermolabile solids in supercritical fluids since no critical properties of the solute are required
Acknowledging trauma in a global context: narrative, memory and place
In this chapter, the editors situate the connection between sites of traumatic events and how they are remembered through narratives, whether that be in oral testimony, writing, film, or memory museums. The volume is in three parts. Part I focuses on spaces that highlight the nexus of politics and traumatic memory; Part II analyses real and imagined spaces of trauma that shape individual and collective memory; and Part III examines narrative forms such as film and journalism that memorialise trauma. Each of the chapters examines traumatic narrative within a different cultural context, together covering cases from around the globe. Across the volume, the central concern is the politics of trauma, that is, whose trauma can be visible, and to what end