14 research outputs found

    A Blueprint for Real-Time Functional Mapping via Human Intracranial Recordings

    Get PDF
    International audienceBACKGROUND: The surgical treatment of patients with intractable epilepsy is preceded by a pre-surgical evaluation period during which intracranial EEG recordings are performed to identify the epileptogenic network and provide a functional map of eloquent cerebral areas that need to be spared to minimize the risk of post-operative deficits. A growing body of research based on such invasive recordings indicates that cortical oscillations at various frequencies, especially in the gamma range (40 to 150 Hz), can provide efficient markers of task-related neural network activity. PRINCIPAL FINDINGS: Here we introduce a novel real-time investigation framework for mapping human brain functions based on online visualization of the spectral power of the ongoing intracranial activity. The results obtained with the first two implanted epilepsy patients who used the proposed online system illustrate its feasibility and utility both for clinical applications, as a complementary tool to electrical stimulation for presurgical mapping purposes, and for basic research, as an exploratory tool used to detect correlations between behavior and oscillatory power modulations. Furthermore, our findings suggest a putative role for high gamma oscillations in higher-order auditory processing involved in speech and music perception. CONCLUSION/SIGNIFICANCE: The proposed real-time setup is a promising tool for presurgical mapping, the investigation of functional brain dynamics, and possibly for neurofeedback training and brain computer interfaces

    From the diabetic foot ulcer and beyond: how do foot infections spread in patients with diabetes?

    No full text
    A diabetic foot infection is usually the result of a pre-existing foot ulceration and is the leading cause of lower extremity amputation in patients with diabetes. It is widely accepted that diabetic foot infections may be challenging to treat for several reasons. The devastating effects of hyperglycemia on host defense, ischemia, multi-drug resistant bacteria and spreading of infection through the foot may complicate the course of diabetic foot infections. Understanding the ways in which infections spread through the diabetic foot is a pivotal factor in order to decide the best approach for the patient's treatment. The ways in which infections spread can be explained by the anatomical division of the foot into compartments, the tendons included in the compartments, the initial location of the point of entry of the infection and the type of infection that the patient has. The aim of this paper is to further comment on the existed and proposed anatomical principles of the spread of infection through the foot in patients with diabetes

    A Modified Surgical Technique for Lengthening of a Metatarsal Using an External Fixator

    No full text
    Brachymetatarsia is a congenital or developmental condition that results in a short metatarsal. Problems that arise from this condition can include pain, difficulty with shoe wear, and cosmetic concerns. Multiple techniques have been described that successfully correct the deformity, including both acute and gradual distraction. We describe a modification of the technique of gradual lengthening by way of distraction osteogenesis in which an axial transarticular K-wire is incorporated into a monolateral frame, thereby increasing the stability of the construct and potentially minimizing complications

    Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy

    Get PDF
    Temporal lobe epilepsy (TLE) is a common chronic neurological disease in humans. A number of studies have demonstrated differential expression of miRNAs in the hippocampus of humans with TLE and in animal models of experimental epilepsy. However, the dissimilarities in experimental design have led to largely discordant results across these studies. Thus, a comprehensive comparison is required in order to better characterize miRNA profiles obtained in various post-status epilepticus (SE) models. We therefore created a database and performed a meta-analysis of differentially expressed miRNAs across 3 post-SE models of epileptogenesis (electrical stimulation, pilocarpine and kainic acid) and human TLE with hippocampal sclerosis (TLE-HS). The database includes data from 11 animal post-SE studies and 3 human TLE-HS studies. A total of 378 differentially expressed miRNAs were collected (274 up-regulated and 198 down-regulated) and analyzed with respect to the post-SE model, time point and animal species. We applied the novel robust rank aggregation method to identify consistently differentially expressed miRNAs across the profiles. It highlighted common and unique miRNAs at different stages of epileptogenesis. The pathway analysis revealed involvement of these miRNAs in key pathogenic pathways underlying epileptogenesis, including inflammation, gliosis and deregulation of the extracellular matrix
    corecore