1,628 research outputs found
Benign Paroxysmal Positional Vertigo
Benign paroxysmal positional vertigo (BPPV) is the most common cause of recurrent vertigo and has a lifetime prevalence of 2.4% in the general population. Benign paroxysmal positional vertigo is caused when calcium carbonate material originating from the macula of the utricle falls into one of the semicircular canals. Due to their density relative to the endolymph, they move in response to gravity and trigger excitation of the ampullary nerve of the affected canal. This, in turn, produces a burst of vertigo associated with nystagmus unique to that canal. Recognition of this condition is important not only because it may avert expensive and often unnecessary testing, but also because treatment is rapid, easy, and effective in \u3e90% of cases. Two well-established methods of treating BPPV are discussed and explained in this article along with a brief discussion of the most commonly used method for treatment of horizontal canal BPPV. Recurrence rates approach 50% in those followed for at least 5 years
Posttraumatic Vertigo and Dizziness
Dizziness and vertigo are common symptoms following minor head trauma. Although these symptoms resolve within a few weeks in many patients, in some the symptoms may last much longer and impede ability to return to work and full functioning. Causes of persisting or recurrent dizziness may include benign paroxysmal positional vertigo, so-called labyrinthine concussion, unilateral vestibular nerve injury or damage to the utricle or saccule, perilymphatic fistula, or less commonly traumatic endolymphatic hydrops. Some dizziness after head trauma is due to nonlabyrinthine causes that may be related to structural or microstructural central nervous system injury or to more complicated interactions between migraine, generalized anxiety, and issues related to patients self-perception, predisposing psychological states, and environmental and stress-related factors. In this article, the authors review both the inner ear causes of dizziness after concussion and also the current understanding of chronic postconcussive dizziness when no peripheral vestibular cause can be identified
Causes of Imbalance and Abnormal Gait That May Be Misdiagnosed
Disorders of gait and balance are common in medicine and often lead to referral for neurologic evaluation. Because the maintenance of balance and normal gait are mediated by complex neurologic pathways as well as musculoskeletal, metabolic, and behavioral considerations, the list of possible contributing causes is very large. Much of the time, the history and neurologic examination reveal the underlying cause or causes. There are instances, however, when there are limited neurologic findings, as well as no structural abnormalities on brain or spine magnetic resonance imaging studies to explain the imbalance or gait difficulty. In this article, selected disorders that may be overlooked in the neurologic examination and imaging studies are reviewed. Possible causes of imbalance include occult drug-induced ataxia, autoimmune ataxia, ataxia associated with tremor, bilateral vestibular hypofunction, and spastic or dystonic gait disorders with normal imaging
Drift- or Fluctuation-Induced Ordering and Self-Organization in Driven Many-Particle Systems
According to empirical observations, some pattern formation phenomena in
driven many-particle systems are more pronounced in the presence of a certain
noise level. We investigate this phenomenon of fluctuation-driven ordering with
a cellular automaton model of interactive motion in space and find an optimal
noise strength, while order breaks down at high(er) fluctuation levels.
Additionally, we discuss the phenomenon of noise- and drift-induced
self-organization in systems that would show disorder in the absence of
fluctuations. In the future, related studies may have applications to the
control of many-particle systems such as the efficient separation of particles.
The rather general formulation of our model in the spirit of game theory may
allow to shed some light on several different kinds of noise-induced ordering
phenomena observed in physical, chemical, biological, and socio-economic
systems (e.g., attractive and repulsive agglomeration, or segregation).Comment: For related work see http://www.helbing.or
The CDC Revised Recommendations for HIV Testing: Reactions of Women Attending Community Health Clinics
The purpose of this study was to examine reactions to the Centers for Disease Control and Prevention revised recommendations for HIV testing by women attending community health clinics. A total of 30 women attending three community clinics completed semistructured individual interviews containing three questions about the recommendations. Thematic content analysis of responses was conducted. Results were that all agreed with the recommendation for universal testing. Most viewed opt-out screening as an acceptable approach to HIV testing. Many emphasized the importance of provision of explicit verbal informed consent. The majority strongly opposed the elimination of the requirement for pretest prevention counseling and spontaneously talked about the ongoing importance of posttest counseling. The conclusion was that there was strong support for universal testing of all persons 13 to 64 years old but scant support for the elimination of pretest prevention counseling. In general, respondents believed that verbal informed consent for testing as well as provision of HIV-related information before and after testing were crucial
The Antiferromagnetic Band Structure of La2CuO4 Revisited
Using the Becke-3-LYP functional, we have performed band structure
calculations on the high temperature superconductor parent compound, La2CuO4.
Under the restricted spin formalism (rho(alpha) equal to rho(beta)), the
R-B3LYP band structure agrees well with the standard LDA band structure. It is
metallic with a single Cu x2-y2/O p(sigma) band crossing the Fermi level. Under
the unrestricted spin formalism (rho(alpha) not equal to rho(beta)), the UB3LYP
band structure has a spin polarized antiferromagnetic solution with a band gap
of 2.0 eV, agreeing well with experiment. This state is 1.0 eV (per formula
unit) lower than that calculated from the R-B3LYP. The apparent high energy of
the spin restricted state is attributed to an overestimate of on-site Coulomb
repulsion which is corrected in the unrestricted spin calculations. The
stabilization of the total energy with spin polarization arises primarily from
the stabilization of the x2-y2 band, such that the character of the eigenstates
at the top of the valence band in the antiferromagnetic state becomes a strong
mixture of Cu x2-y2/O p(sigma) and Cu z2/O' p(z). Since the Hohenberg-Kohn
theorem requires the spin restricted and spin unrestricted calculations give
exactly the same ground state energy and total density for the exact
functionals, this large disparity in energy reflects the inadequacy of current
functionals for describing the cuprates. This calls into question the use of
band structures based on current restricted spin density functionals (including
LDA) as a basis for single band theories of superconductivity in these
materials.Comment: 13 pages, 8 figures, to appear in Phys. Rev. B, for more information
see http://www.firstprinciples.co
T>0 properties of the infinitely repulsive Hubbard model for arbitrary number of holes
Based on representations of the symmetric group , explicit and exact
Schr\"odinger equation is derived for Hubbard model in any
dimensions with arbitrary number of holes, which clearly shows that during the
movement of holes the spin background of electrons plays an important role.
Starting from it, at T=0 we have analyzed the behaviour of the system depending
on the dimensionality and number of holes. Based on the presented formalism
thermodynamic quantities have also been expressed using a loop summation
technique in which the partition function is given in terms of characters of
. In case of the studied finite systems, the loop summation have been
taken into account exactly up to the 14-th order in reciprocal temperature and
the results were corrected in higher order based on Monte Carlo simulations.
The obtained results suggest that the presented formalism increase the
efficiency of the Monte Carlo simulations as well, because the spin part
contribution of the background is automatically taken into account by the
characters of .Comment: 26 pages, 1 embedded ps figure; Phil. Mag. B (in press
On a Conjecture of Goriely for the Speed of Fronts of the Reaction--Diffusion Equation
In a recent paper Goriely considers the one--dimensional scalar
reaction--diffusion equation with a polynomial reaction
term and conjectures the existence of a relation between a global
resonance of the hamiltonian system and the asymptotic
speed of propagation of fronts of the reaction diffusion equation. Based on
this conjecture an explicit expression for the speed of the front is given. We
give a counterexample to this conjecture and conclude that additional
restrictions should be placed on the reaction terms for which it may hold.Comment: 9 pages Revtex plus 4 postcript figure
Travelling waves in a tissue interaction model for skin pattern formation
Tissue interaction plays a major role in many morphogenetic processes, particularly those associated with skin organ primordia. We examine travelling wave solutions in a tissue interaction model for skin pattern formation which is firmly based on the known biology. From a phase space analysis we conjecture the existence of travelling waves with specific wave speeds. Subsequently, analytical approximations to the wave profiles are derived using perturbation methods. We then show numerically that such travelling wave solutions do exist and that they are in good agreement with our analytical results. Finally, the biological implications of our analysis are discussed
- …