27 research outputs found

    The effect of sampling effort on spatial autocorrelation in macrobenthic intertidal invertebrates

    No full text
    The importance of sampling effort in the statistical exploration of spatial autocorrelation is demonstrated for benthic macroinvertebrate assemblages within the intertidal warm-temperate Knysna estuary, South Africa. While the role of spatial scale in determining autocorrelation patterns in ecological populations has been noted, the effects of changing sampling effort (e.g., sample size) have rarely been explored; neither have the nature of any changes with sample size. Invertebrate assemblages were sampled from a single grid lattice comprised of 48 sampling stations at four sample sizes (0.0015, 0.0026, 0.0054 and 0.01 m ). Four metrics were investigated: assemblage abundance, frequency (species density), and numbers of the two most abundant species in the area Simplisetia erythraeensis and Prionospio sexoculata. Spatial autocorrelation was estimated for each sample size from the global Moran’s I. For a range of distance classes, Moran’s I correlograms were constructed, these plotted autocorrelation estimates as a function of the separation distance between point samples. Spatial autocorrelation was present in three of the metrics (assemblage abundance frequency and Prionospio abundance), but not for Simplisetia abundance. The estimated magnitude of spatial autocorrelation varied across sampling units for all four assemblage and species metrics (global Moran’s I ranged from 0.5 to − 0.07). Correlograms indicated that optimal sampling interval distances fell in the region of 8 m for Simplisetia and 19 m for the remaining three metrics. These distances indicate the dimensions of the processes (both biotic and abiotic) that determine spatial patterning in the microbenthic intertidal invertebrates sampled.

    Perception and synthesis of sound-generating materials

    No full text
    The auditory perception of materials is a popular topic in the study of non-vocal sound-source perception. In this chapter, we review the empirical evidence on the mechanical and acoustical correlates of the perception of impacted stiff materials, and of the state of matter of sound-generating substances (solids, liquids, gases). As a whole, these studies suggest that recognition abilities are only highly accurate when differentiating between widely diverse materials (e.g. liquids vs. solids or plastics vs. metals) and that limitations in the auditory system, along with the possible internalization of biased statistics in the acoustical environment (e.g. clinking-glass sounds tend to be produced by small objects), might account for the less-than-perfect ability to differentiate between mechanically similar materials. This review is complemented by a summary of studies concerning the perception of deformable materials (fabrics and liquids) and the perceptual and motor-behaviour effects of auditory material-related information in audio-haptic contexts. The results of perceptual studies are the starting point for the development of interactive sound synthesis techniques for rendering the main auditory correlates of material properties, starting from physical models of the involved mechanical interactions. We review the recent literature dealing with contact sound synthesis in such fields as sonic interaction design and virtual reality. Special emphasis is given to softness/hardness correlates in impact sounds, associated with solid object resonances excited through impulsive contact. Synthesis methods for less studied sound-generating systems such as deformable objects (e.g. fabrics and liquids) and aggregate materials are also described
    corecore