1,016 research outputs found

    A New Distribution-Sensitive Secure Sketch and Popularity-Proportional Hashing

    Get PDF
    Motivated by typo correction in password authentication, we investigate cryptographic error-correction of secrets in settings where the distribution of secrets is a priori (approximately) known. We refer to this as the distribution-sensitive setting. We design a new secure sketch called the layer-hiding hash (LHH) that offers the best security to date. Roughly speaking, we show that LHH saves an additional log H_0(W) bits of entropy compared to the recent layered sketch construction due to Fuller, Reyzin, and Smith (FRS). Here H_0(W) is the size of the support of the distribution W. When supports are large, as with passwords, our new construction offers a substantial security improvement. We provide two new constructions of typo-tolerant password-based authentication schemes. The first combines a LHH or FRS sketch with a standard slow-to-compute hash function, and the second avoids secure sketches entirely, correcting typos instead by checking all nearby passwords. Unlike the previous such brute-force-checking construction, due to Chatterjee et al., our new construction uses a hash function whose run-time is proportional to the popularity of the password (forcing a longer hashing time on more popular, lower entropy passwords). We refer to this as popularity-proportional hashing (PPH). We then introduce a frame-work for comparing different typo-tolerant authentication approaches. We show that PPH always offers a better time / security trade-off than the LHH and FRS constructions, and for certain distributions outperforms the Chatterjee et al. construction. Elsewhere, this latter construction offers the best trade-off. In aggregate our results suggest that the best known secure sketches are still inferior to simpler brute-force based approaches

    16(th) IHIW: population global distribution of killer immunoglobulin-like receptor (KIR) and ligands.

    No full text
    In the last fifteen years, published reports have described KIR gene-content frequency distributions in more than 120 populations worldwide. However, there have been limited studies examining these data in aggregate to detect overall patterns of variation at regional and global levels. Here, we present a summary of the collection of KIR gene-content data for 105 worldwide populations collected as part of the 15th and 16th International Histocompatibility and Immunogenetics Workshops, and preliminary results for data analysis

    The sudden change phenomenon of quantum discord

    Full text link
    Even if the parameters determining a system's state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F. F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp 309-33

    Efficient Second-Order Shape-Constrained Function Fitting

    Get PDF
    We give an algorithm to compute a one-dimensional shape-constrained function that best fits given data in weighted-LL_{\infty} norm. We give a single algorithm that works for a variety of commonly studied shape constraints including monotonicity, Lipschitz-continuity and convexity, and more generally, any shape constraint expressible by bounds on first- and/or second-order differences. Our algorithm computes an approximation with additive error ε\varepsilon in O(nlogUε)O\left(n \log \frac{U}{\varepsilon} \right) time, where UU captures the range of input values. We also give a simple greedy algorithm that runs in O(n)O(n) time for the special case of unweighted LL_{\infty} convex regression. These are the first (near-)linear-time algorithms for second-order-constrained function fitting. To achieve these results, we use a novel geometric interpretation of the underlying dynamic programming problem. We further show that a generalization of the corresponding problems to directed acyclic graphs (DAGs) is as difficult as linear programming.Comment: accepted for WADS 2019; (v2 fixes various typos

    A Global Clustering Algorithm to Identify Long Intergenic Non-Coding RNA - with Applications in Mouse Macrophages

    Get PDF
    Identification of diffuse signals from the chromatin immunoprecipitation and high-throughput massively parallel sequencing (ChIP-Seq) technology poses significant computational challenges, and there are few methods currently available. We present a novel global clustering approach to enrich diffuse CHIP-Seq signals of RNA polymerase II and histone 3 lysine 4 trimethylation (H3K4Me3) and apply it to identify putative long intergenic non-coding RNAs (lincRNAs) in macrophage cells. Our global clustering method compares favorably to the local clustering method SICER that was also designed to identify diffuse CHIP-Seq signals. The validity of the algorithm is confirmed at several levels. First, 8 out of a total of 11 selected putative lincRNA regions in primary macrophages respond to lipopolysaccharides (LPS) treatment as predicted by our computational method. Second, the genes nearest to lincRNAs are enriched with biological functions related to metabolic processes under resting conditions but with developmental and immune-related functions under LPS treatment. Third, the putative lincRNAs have conserved promoters, modestly conserved exons, and expected secondary structures by prediction. Last, they are enriched with motifs of transcription factors such as PU.1 and AP.1, previously shown to be important lineage determining factors in macrophages, and 83% of them overlap with distal enhancers markers. In summary, GCLS based on RNA polymerase II and H3K4Me3 CHIP-Seq method can effectively detect putative lincRNAs that exhibit expected characteristics, as exemplified by macrophages in the study

    Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    Get PDF
    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively

    A Quaternary ZnCdSeTe Nanotip Photodetector

    Get PDF
    The authors report the growth of needle-like high density quaternary Zn0.87Cd0.13Se0.98Te0.02nanotips on oxidized Si(100) substrate. It was found that average length and average diameter of the nanotips were 1.3 μm and 91 nm, respectively. It was also found that the as-grown ZnCdSeTe nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. Furthermore, it was found that the operation speeds of the fabricated ZnCdSeTe nanotip photodetector were fast with turn-on and turn-off time constants both less than 2 s

    Surgical treatment and prognostic analysis for gastrointestinal stromal tumors (GISTs) of the small intestine: before the era of imatinib mesylate

    Get PDF
    BACKGROUND: Gastrointestinal stromal tumors (GISTs), the most common type of mesenchymal tumors of the gastrointestinal (GI) tract, demonstrate positive kit staining. We report our surgical experience with 100 small intestine GIST patients and identify predictors for long-term disease-free survival (DFS) and overall survival (OS) to clarify the difference between high- and low-risk patients. METHODS: The clinicopathologic and follow-up records of 100 small intestine GIST patients who were treated at Chung Gung Memorial Hospital between 1983 and 2002 were retrospectively reviewed. Clinical and pathological factors were assessed for long-term DFS and OS by using a univariate log-rank test and a multivariate Cox proportional hazard model. RESULTS: The patients included 52 men and 48 women. Their ages ranged from 27 to 82 years. Among the 85 patients who underwent curative resection, 44 (51.8%) developed disease recurrence (liver metastasis was the most common form of recurrence). The follow-up period ranged from 5 to 202 months (median: 33.2 months). The 1-, 3-, and 5-year DFS and OS rates were 85.2%, 53.8%, and 43.7%, and 91.5%, 66.6%, and 50.5%, respectively. Using multivariate analysis, it was found that high tumor cellularity, mitotic count >5/50 high-power field, and a Ki-67 index ≧10% were three independent factors that were inversely associated with DFS. However, absence of tumor perforation, mitotic count < 5/50 high power field, and tumor with low cellularity were predictors of long-term favorable OS. CONCLUSION: Tumors with low cellularity, low mitotic count, and low Ki-67 index, which indicate low risk, predict a more favorable DFS for small intestine GIST patients undergoing curative resection. Absence of tumor perforation with low mitotic count and low cellularity, which indicates low risk, can predict long-term OS for small intestine GIST patients who have undergone curative resection
    corecore