14 research outputs found

    Exploiting phytochemicals for developing sustainable crop protection strategies to withstand climate change: example from Africa

    No full text
    Africa suffers chronic food insecurity resulting from ravaging effects of insect pests, weeds and poor soil fertility, with rising poverty and increasingly dry and hot weather conditions associated with climate change further aggravating this situation. Scientists at the International Centre of Insect Physiology and Ecology (icipe) together with national and international partners have developed a platform technology, ‘push–pull’, based on locally available companion plants for integrated management of these constraints by exploiting innate plant defence systems including secondary metabolism. This involves intercropping cereal crops, the main staple and cash crops for millions of smallholder farmers in the continent, with forage legumes in the genus Desmodium and planting Napier grass as a trap plant around this intercrop. Stemborer pests are attracted to Napier grass (pull) and are repelled from the main cereal crop by the repellent desmodium (push). Desmodium root exudates effectively control the parasitic striga weed by causing abortive germination and also improve soil fertility through nitrogen fixation, provide natural mulching and improve biomass. Both companion plants provide high-value animal fodder, facilitate milk production and fetch additional income for farmers. The technology is appropriate to smallholder mixed cropping systems in sub-Saharan Africa (SSA) as it effectively addresses major production constraints and significantly increases cereal yields. It is currently being practiced by about 90,000 smallholder farmers in eastern Africa and has also been adapted to harsh conditions associated with climate change by incorporating drought-tolerant companion plants. This chapter highlights the developmental process of the technology and its benefits in SSA in the face of climate change

    Performance of cowpea varieties under Striga gesnerioides (Willd.) Vatke infestation using biplot analysis

    Get PDF
    Published online: 10 October 2017Striga gesnerioides (Willd) Vatke, is a major destructive parasitic weed of cowpea (Vigna unguiculata (L.) Walp.) which causes substantial yield reduction in West and Central Africa. The presence of different virulent races within the parasite population contributes to significant genotype × environment interaction, and complicates breeding for durable resistance to Striga. A 3-year study was conducted at three locations in the dry savanna agro-ecology of Nigeria, where Striga gesnerioides is endemic. The primary objective of the study was to identify cowpea genotypes with high yield under Striga infestation and yield stability across test environments and to access suitability of the test environment. Data collected on grain yield and yield components were subjected to analysis of variance (ANOVA). Means from ANOVA were subjected to the genotype main effect plus genotype × environment (GGE) biplot analysis to examine the multi-environment trial data and rank genotypes according to the environments. Genotypes, environment, and genotypes × environment interaction mean squares were significant for grain yield and yield components, and number of emerged Striga plants. The environment accounted for 35.01%, whereas the genotype × environment interaction accounted for 9.10% of the variation in grain yield. The GGE biplot identified UAM09 1046-6-1 (V7), and UAM09 1046-6-2 (V8), as ideal genotypes suggesting that these genotypes performed relatively well in all study environments and could be regarded as adapted to a wide range of locations. Tilla was the most repeatable and ideal location for selecting widely adapted genotypes for resistance to S. gesnerioides
    corecore