355 research outputs found

    Synchronization of spin-transfer oscillators driven by stimulated microwave currents

    Full text link
    We have simulated the non-linear dynamics of networks of spin-transfer oscillators. The oscillators are magnetically uncoupled but electrically connected in series. We use a modified Landau-Lifschitz- Gilbert equation to describe the motion of each oscillator in the presence of the oscillations of all the others. We show that the oscillators of the network can be synchronized not only in frequency but also in phase. The coupling is due to the microwave components of the current induced in each oscillator by the oscillations in all the other oscillators. Our results show how the emitted microwave power of spin-transfer oscillators can be considerably enhanced by current-induced synchronization in an electrically connected network. We also discuss the possible application of our synchronization mechanism to the interpretation of the surprisingly narrow microwave spectrum in some isolated spin-transfer oscillators

    Switching the magnetic configuration of a spin valve by current induced domain wall motion

    Full text link
    We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.Comment: 3 pages, 3 figure

    Switching a spin-valve back and forth by current-induced domain wall motion

    Full text link
    We have studied the current-induced displacement of a domain wall (DW) in the permalloy (Py) layer of a Co/Cu/Py spin valve structure at zero and very small applied field. The displacement is in opposite direction for opposite dc currents, and the current density required to move DW is only of the order of 10^6 A/cm^2. For H = 3 Oe, a back and forth DW motion between two stable positions is observed. We also discuss the effect of an applied field on the DW motion.Comment: 4 pages, 3 figure

    Dynamics of two coupled vortices in a spin valve nanopillar excited by spin transfer torque

    Full text link
    We investigate the dynamics of two coupled vortices driven by spin transfer. We are able to independently control with current and perpendicular field, and to detect, the respective chiralities and polarities of the two vortices. For current densities above J=5.7107A/cm2J=5.7*10^7 A/cm^2, a highly coherent signal (linewidth down to 46 kHz) can be observed, with a strong dependence on the relative polarities of the vortices. It demonstrates the interest of using coupled dynamics in order to increase the coherence of the microwave signal. Emissions exhibit a linear frequency evolution with perpendicular field, with coherence conserved even at zero magnetic field

    Coupling efficiency for phase locking of a spin transfer oscillator to a microwave current

    Full text link
    The phase locking behavior of spin transfer nano-oscillators (STNOs) to an external microwave signal is experimentally studied as a function of the STNO intrinsic parameters. We extract the coupling strength from our data using the derived phase dynamics of a forced STNO. The predicted trends on the coupling strength for phase locking as a function of intrinsic features of the oscillators i.e. power, linewidth, agility in current, are central to optimize the emitted power in arrays of mutually coupled STNOs

    Large microwave generation from d.c. driven magnetic vortex oscillators in magnetic tunnel junctions

    Get PDF
    Spin polarized current can excite the magnetization of a ferromagnet through the transfer of spin angular momentum to the local spin system. This pure spin-related transport phenomena leads to alluring possibilities for the achievement of a nanometer scale, CMOS compatible and tunable microwave generator operating at low bias for future wireless communications. Microwave emission generated by the persitent motion of magnetic vortices induced by spin transfer effect seems to be a unique manner to reach appropriate spectral linewidth. However, in metallic systems, where such vortex oscillations have been observed, the resulting microwave power is much too small. Here we present experimental evidences of spin-transfer induced core vortex precessions in MgO-based magnetic tunnel junctions with similar good spectral quality but an emitted power at least one order of magnitude stronger. More importantly, unlike to others spin transfer excitations, the thorough comparison between experimental results and models provide a clear textbook illustration of the mechanisms of vortex precessions induced by spin transfer

    Spin injection in a single metallic nanoparticle: a step towards nanospintronics

    Full text link
    We have fabricated nanometer sized magnetic tunnel junctions using a new nanoindentation technique in order to study the transport properties of a single metallic nanoparticle. Coulomb blockade effects show clear evidence for single electron tunneling through a single 2.5 nm Au cluster. The observed magnetoresistance is the signature of spin conservation during the transport process through a non magnetic cluster.Comment: 3 page
    corecore