4,582 research outputs found
Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient
Results of correlative and design studies for transition location, laminar and turbulent boundary-layer parameters, and wake drag for forward swept and aft swept wings are presented. These studies were performed with the use of an improved integral-type boundary-layer and transition-prediction methods. Theoretical predictions were compared with flight measurements at subsonic and transonic flow conditions for the variable aft swept wing F-14 aircraft for which experimental pressure distributions, transition locations, and turbulent boundary-layer velocity profiles were measured. Flight data were available at three spanwise stations for several values of sweep, freestream unit Reynolds number, Mach numbers, and lift coefficients. Theory/experiment correlations indicate excellent agreement for both transition location and turbulent boundary-layer parameters. The results of parametric studies performed during the design of a laminar glove for the forward swept wing X-29 aircraft are also presented. These studies include the effects of a spanwise pressure gradient on transition location and wake drag for several values of freestream Reynolds numbers at a freestream Mach number of 0.9
A biophysical model of prokaryotic diversity in geothermal hot springs
Recent field investigations of photosynthetic bacteria living in geothermal
hot spring environments have revealed surprisingly complex ecosystems, with an
unexpected level of genetic diversity. One case of particular interest involves
the distribution along hot spring thermal gradients of genetically distinct
bacterial strains that differ in their preferred temperatures for reproduction
and photosynthesis. In such systems, a single variable, temperature, defines
the relevant environmental variation. In spite of this, each region along the
thermal gradient exhibits multiple strains of photosynthetic bacteria adapted
to several distinct thermal optima, rather than the expected single thermal
strain adapted to the local environmental temperature. Here we analyze
microbiology data from several ecological studies to show that the thermal
distribution field data exhibit several universal features independent of
location and specific bacterial strain. These include the distribution of
optimal temperatures of different thermal strains and the functional dependence
of the net population density on temperature. Further, we present a simple
population dynamics model of these systems that is highly constrained by
biophysical data and by physical features of the environment. This model can
explain in detail the observed diversity of different strains of the
photosynthetic bacteria. It also reproduces the observed thermal population
distributions, as well as certain features of population dynamics observed in
laboratory studies of the same organisms
Scenario selection method for system scenario analysis
Scenario analysis is a frequently-used method to explore what a proposed system is required to do in the early phases of system development leading towards finding system requirements. A system which is intended to perform a variety of roles under a range of conditions is likely to result in the need for a quantity of scenarios that becomes intractably pluriform. The consequence of too many scenarios is that either the number of scenarios to be analysed must be reduced to a manageable number or the analysis is likely to be perfunctory, diminishing the value of the analysis. We present a method for reducing the number of scenarios to be analysed through study of the organization of the factors which distinguish scenarios from each other, and for selecting which scenarios need analysis through identifying their points of commonality and identifying where differences may impact system capability. Our method organises the types and potential values of factors related to a particular system development in order to reduce the number of scenarios to be investigate
Surpassing the Standard Quantum Limit in an Atom Interferometer with Four-mode Entanglement Produced from Four-Wave Mixing
We theoretically investigate a scheme for atom interferometry that surpasses
the standard quantum limit. A four-wave mixing scheme similar to the recent
experiment performed by Pertot et al. \cite{pertot} is used to generate
sub-shot noise correlations between two modes. These two modes are then
interfered with the remaining two modes in such a way as to surpass the
standard quantum limit, whilst utilising all of the available atoms. Our scheme
can be viewed as using two correlated interferometers. That is, the signal from
each interferometer when looked at individually is classical, but there are
correlations between the two interferometers that allow for the standard
quantum limit to be surpassed.Comment: 7 pages, 5 figure
The Effect of Inclusion of a Range of Supplementary Feeds on Herbage Intake, Total Dry Matter Intake and Substitution Rate in Grazing Dairy Cows
The milk production potential of dairy cows has increased substantially over the past two decades. This development presents new challenges for managing dairy cows during grazing, particularly where the objective is to maximise the proportion of energy in the diet derived from forage. The objective of the current study was to explore supplementation strategies to maintain high total forage intakes from grazed grass supplemented with alternative forage supplements in dairy cows during the grazing season. A second objective of the study was to examine the effect of supplement on substitution rate (SR) and milk yield response
Scenario selection method for system scenario analysis
Scenario analysis is a frequently-used method to explore what a proposed system is required to do in the early phases of system development leading towards finding system requirements. A system which is intended to perform a variety of roles under a range of conditions is likely to result in the need for a quantity of scenarios that becomes intractably pluriform. The consequence of too many scenarios is that either the number of scenarios to be analysed must be reduced to a manageable number or the analysis is likely to be perfunctory, diminishing the value of the analysis. We present a method for reducing the number of scenarios to be analysed through study of the organization of the factors which distinguish scenarios from each other, and for selecting which scenarios need analysis through identifying their points of commonality and identifying where differences may impact system capability. Our method organises the types and potential values of factors related to a particular system development in order to reduce the number of scenarios to be investigate
Use of MMG signals for the control of powered orthotic devices: Development of a rectus femoris measurement protocol
Copyright © 2009 Rehabilitation Engineering and Assistive Technology Society (RESNA). This is an Author's Accepted Manuscript of an article published in Assistive Technology, 21(1), 1 - 12, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/10400430902945678.A test protocol is defined for the purpose of measuring rectus femoris mechanomyographic (MMG) signals. The protocol is specified in terms of the following: measurement equipment, signal processing requirements, human postural requirements, test rig, sensor placement, sensor dermal fixation, and test procedure. Preliminary tests of the statistical nature of rectus femoris MMG signals were performed, and Gaussianity was evaluated by means of a two-sided Kolmogorov-Smirnov test. For all 100 MMG data sets obtained from the testing of two volunteers, the null hypothesis of Gaussianity was rejected at the 1%, 5%, and 10% significance levels. Most skewness values were found to be greater than 0.0, while all kurtosis values were found to be greater than 3.0. A statistical convergence analysis also performed on the same 100 MMG data sets suggested that 25 MMG acquisitions should prove sufficient to statistically characterize rectus femoris MMG. This conclusion is supported by the qualitative characteristics of the mean rectus femoris MMG power spectral densities obtained using 25 averages
Trends in Soil Science Education and Employment
During the last several decades, members of the SSSA have discussed several trends related to soil science education, including: (i) declining academic programs and course offerings at land grant universities, (ii) decreased enrollments, and (iii) improved employment opportunities for soil science graduates (SSSA, 2006; Ferris et al., 2010). The SSSA Advocacy/Education Task Force met in 2007 and concluded that quantitative survey information was needed to document trends in soil science academic programs, student enrollment, faculty, and job opportunities for graduates. Suggested survey topics included: Has the recognition of soil science as a distinct discipline increased or decreased? How has the job market changed during the past decade, and how will job opportunities for soil scientists change in the future? How have undergraduate and graduate soils curricula changed during the last decade? Has enrollment in soil science degree programs and courses changed during the past decade? Has there been a change in the degree programs of students enrolling in soils courses in the past decade? Have soil science programs been combined with other programs?
Therefore, the objective of the survey was to quantify trends in student enrollment, faculty positions, pertinent educational issues in soil and related sciences, and career or job opportunities and trends. Expected outcomes included a better understanding of current educational practices and trends, and identification of specific opportunities for SSSA to enhance the practice and profession of soil science
Outdoor air pollution and near-fatal/fatal asthma attacks in children: A systematic review.
BACKGROUND: Globally, observational studies have demonstrated an association between high levels of air pollution and asthma attacks in children. It remains unclear whether and to what extent exposure may be associated with increased near-fatal/fatal attacks. OBJECTIVE: To systematically review the evidence for an association between ambient outdoor air pollution and fatal and/or near-fatal asthma (NFA). METHODS: Following Cochrane methodology, we searched MEDLINE, EMBASE, Web of Science, Scopus, and Open Grey electronic databases for studies reporting the association of fatal/NFA and air pollution (particulate matter [PM], sulfur dioxide, nitrogen dioxide, black carbon and ozone [O3 ]) in children. NFA was defined as requiring intensive care unit (ICU) management. RESULTS: Two reviewers independently screened 1358 papers. A total of 276 studies identified asthma attacks related to air pollution, 272 did not meet inclusion criteria after full-text review. Four observational studies described fatal/NFA, of which three addressed NFA. PM2.5 (per 12.5 µg/m3 increase) and O3 (per 22 ppb increase) were associated with NFA in one study (PM2.5, relative risk: 1.26, confidence interval [CI] [1.10-1.44]), O3 (1.19 [1.01-1.40]). PM10 was associated with ICU admission in the context of thunderstorm asthma. Elemental carbon was associated equally with NFA that did not require an ICU admission (p = 0.67). Studies of fatal asthma including children did not demarcate age within the analysis. CONCLUSIONS: Ozone and PM2.5 have been associated with NFA in children but synthesis is limited by the paucity of studies and methodological heterogeneity. Poor reporting of severities of asthma attacks hinders the assessment of whether outdoor air pollution is associated with an increased number of NFA/fatal attacks in children
- …