33,225 research outputs found

    Exchange coupling between magnetic layers across non-magnetic superlattices

    Full text link
    The oscillation periods of the interlayer exchange coupling are investigated when two magnetic layers are separated by a metallic superlattice of two distinct non-magnetic materials. In spite of the conventional behaviour of the coupling as a function of the spacer thickness, new periods arise when the coupling is looked upon as a function of the number of cells of the superlattice. The new periodicity results from the deformation of the corresponding Fermi surface, which is explicitly related to a few controllable parameters, allowing the oscillation periods to be tuned.Comment: 13 pages; 5 figures; To appear in J. Phys.: Cond. Matte

    Exponential behavior of the interlayer exchange coupling across non-magnetic metallic superlattices

    Full text link
    It is shown that the coupling between magnetic layers separated by non-magnetic metallic superlattices can decay exponentially as a function of the spacer thickness NN, as opposed to the usual N−2N^{-2} decay. This effect is due to the lack of constructive contributions to the coupling from extended states across the spacer. The exponential behavior is obtained by properly choosing the distinct metals and the superlattice unit cell composition.Comment: To appear in Phys. Rev.

    Magnetization profile for impurities in graphene nanoribbons

    Full text link
    The magnetic properties of graphene-related materials and in particular the spin-polarised edge states predicted for pristine graphene nanoribbons (GNRs) with certain edge geometries have received much attention recently due to a range of possible technological applications. However, the magnetic properties of pristine GNRs are not predicted to be particularly robust in the presence of edge disorder. In this work, we examine the magnetic properties of GNRs doped with transition-metal atoms using a combination of mean-field Hubbard and Density Functional Theory techniques. The effect of impurity location on the magnetic moment of such dopants in GNRs is investigated for the two principal GNR edge geometries - armchair and zigzag. Moment profiles are calculated across the width of the ribbon for both substitutional and adsorbed impurities and regular features are observed for zigzag-edged GNRs in particular. Unlike the case of edge-state induced magnetisation, the moments of magnetic impurities embedded in GNRs are found to be particularly stable in the presence of edge disorder. Our results suggest that the magnetic properties of transition-metal doped GNRs are far more robust than those with moments arising intrinsically due to edge geometry.Comment: submitte

    Dispersion and damping of multi-quantum well polaritons from resonant Brillouin scattering by folded acoustic modes

    Get PDF
    We report on confined exciton resonances of acoustic and folded acoustic phonon light scattering in a GaAs/AlAs multi-quantum-well. Significant variations of the line shifts and widths are observed across the resonance and quantitatively reproduced in terms of the polariton dispersion. This high resolution Brillouin study brings new unexpectedly detailed informations on the polariton dynamics in confined systems

    Graphene-based spin-pumping transistor

    Full text link
    We demonstrate with a fully quantum-mechanical approach that graphene can function as gate-controllable transistors for pumped spin currents, i.e., a stream of angular momentum induced by the precession of adjacent magnetizations, which exists in the absence of net charge currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption

    Graphene as a non-magnetic spin-current lens

    Full text link
    In spintronics, the ability to transport magnetic information often depends on the existence of a spin current traveling between two different magnetic objects acting as source and probe. A large fraction of this information never reaches the probe and is lost because the spin current tends to travel omni-directionally. We propose that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure

    Impurity segregation in graphene nanoribbons

    Full text link
    The electronic properties of low-dimensional materials can be engineered by doping, but in the case of graphene nanoribbons (GNR) the proximity of two symmetry-breaking edges introduces an additional dependence on the location of an impurity across the width of the ribbon. This introduces energetically favorable locations for impurities, leading to a degree of spatial segregation in the impurity concentration. We develop a simple model to calculate the change in energy of a GNR system with an arbitrary impurity as that impurity is moved across the ribbon and validate its findings by comparison with ab initio calculations. Although our results agree with previous works predicting the dominance of edge disorder in GNR, we argue that the distribution of adsorbed impurities across a ribbon may be controllable by external factors, namely an applied electric field. We propose that this control over impurity segregation may allow manipulation and fine-tuning of the magnetic and transport properties of GNRs.Comment: 5 pages, 4 figures, submitte

    Dynamic RKKY interaction in graphene

    Full text link
    The growing interest in carbon-based spintronics has stimulated a number of recent theoretical studies on the RKKY interaction in graphene, based on which the energetically favourable alignment between magnetic moments embedded in this material can be calculated. The general consensus is that the strength of the RKKY interaction in graphene decays as 1/D3 or faster, where D is the separation between magnetic moments. Such an unusually fast decay for a 2-dimensional system suggests that the RKKY interaction may be too short ranged to be experimentally observed in graphene. Here we show in a mathematically transparent form that a far more long ranged interaction arises when the magnetic moments are taken out of their equilibrium positions and set in motion. We not only show that this dynamic version of the RKKY interaction in graphene decays far more slowly but also propose how it can be observed with currently available experimental methods.Comment: 7 pages, 2 figures, submitte

    Suscetibilidade da soja a percevejos na fase anterior ao desenvolvimento das vagens.

    Get PDF
    O objetivo deste trabalho foi avaliar os efeitos das populações de percevejos Euschistus heros (F.) e Piezodorus guildinii (West.) nas lavouras de soja nos meses de novembro/dezembro, antes do aparecimento das vagens nas plantas. Foram realizados experimentos em casa de vegetação e no campo, comparando-se infestações no período vegetativo e reprodutivo da cultura. As plantas de soja, mesmo sob o ataque de pesadas infestações de percevejos (até 8 por planta), no período vegetativo e no florescimento, não sofreram reduções significativas no rendimento. A qualidade das sementes foi semelhante entre os tratamentos e entre as espécies. No estádio R4, o número médio de vagens chochas foi diretamente proporcional ao aumento do número de percevejos por planta. No campo, as plantas com até quatro percevejos por metro, no final do período vegetativo-floração, tiveram rendimentos médios e qualidade de sementes semelhantes aos das plantas livres de insetos. No período R5-R6, para as duas espécies de percevejos, o número de grãos picados e inviabilizados cresceram, e os rendimentos médios decresceram com o aumento da população, tendo-se obtido, para a qualidade da soja, um dano duas vezes maior para a espécie P. guildinii em relação a E. heros. Infestações desses percevejos, na fase vegetativa-floração, não causam reduções no rendimento e na qualidade das sementes de soja
    • …
    corecore