15,295 research outputs found

    Electron-Electron Bound States in Maxwell-Chern-Simons-Proca QED3

    Get PDF
    We start from a parity-breaking MCS QED3_{3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e-e bound state. Three expressions are obtained for the potential according to the polarization state of the scattered electrons. In an energy scale compatible with Condensed Matter electronic excitations, these three potentials become degenerated. The resulting potential is implemented in the Schrodinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10-30 Angs. are possible indications that the MCS-QED3_{3} model adopted may be suitable to address an eventual case of e-e pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. PACS numbers: 11.10.Kk 11.15.Ex 74.20.-z 74.72.-h ICEN-PS-01/17Comment: 13 pages, style revtex, revised versio

    Exact static soliton solutions of 3+1 dimensional integrable theory with nonzero Hopf numbers

    Get PDF
    In this paper we construct explicitly an infinite number of Hopfions (static, soliton solutions with non-zero Hopf topological charges) within the recently proposed 3+1-dimensional, integrable and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are constructed explicitly in terms of the toroidal coordinates and shown to have a form of linked closed vortices.Comment: LaTeX, 7 pg

    Electron-electron Bound States in Parity-Preserving QED3

    Full text link
    By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may come out. The e-e interaction potential emerges as the non-relativistic limit of the Moller scattering amplitude and it may result attractive with a suitable choice of parameters. Numerical values of the e-e binding energy are obtained by solving the two-dimensional Schrodinger equation. The existence of bound states is to be viewed as an indicative that this model may be adopted to address the pairing mechanism in some systems endowed with parity-preservation.Comment: 6 pages, 1 table, style revte
    corecore