1,181 research outputs found

    On the Ricci dark energy model

    Full text link
    We study the Ricci dark energy model (RDE) which was introduced as an alternative to the holographic dark energy model. We point out that an accelerating phase of the RDE is that of a constant dark energy model. This implies that the RDE may not be a new model of explaining the present accelerating universe.Comment: 8 page

    Specifying and Verifying Concurrent Algorithms with Histories and Subjectivity

    Full text link
    We present a lightweight approach to Hoare-style specifications for fine-grained concurrency, based on a notion of time-stamped histories that abstractly capture atomic changes in the program state. Our key observation is that histories form a partial commutative monoid, a structure fundamental for representation of concurrent resources. This insight provides us with a unifying mechanism that allows us to treat histories just like heaps in separation logic. For example, both are subject to the same assertion logic and inference rules (e.g., the frame rule). Moreover, the notion of ownership transfer, which usually applies to heaps, has an equivalent in histories. It can be used to formally represent helping---an important design pattern for concurrent algorithms whereby one thread can execute code on behalf of another. Specifications in terms of histories naturally abstract granularity, in the sense that sophisticated fine-grained algorithms can be given the same specifications as their simplified coarse-grained counterparts, making them equally convenient for client-side reasoning. We illustrate our approach on a number of examples and validate all of them in Coq.Comment: 17 page

    Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks

    Full text link

    Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs

    Get PDF
    Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with a high signal-to-noise ratio without the need for ensemble averaging. However, the application of AFM in structural biology has been hampered by the tip-sample convolution effect, which distorts images of nano-structures, particularly those that are of similar dimensions to the cantilever probe tips used in AFM. Here we show that the tip-sample convolution results in a feature-dependent and non-uniform distribution of image resolution on AFM topographs. We show how this effect can be utilised in structural studies of nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited on a flat surface, because it causes ‘magnification’ of such objects in AFM topographs. Subsequently, this enhancement effect is harnessed through contact-point based deconvolution of AFM topographs. Here, the application of this approach is demonstrated through the 3D reconstruction of the surface envelope of individual helical amyloid filaments without the need of cross-particle averaging using the contact- deconvoluted AFM topographs. Resolving the structural variations of individual macromolecular assemblies within inherently heterogeneous populations is paramount for mechanistic understanding of many biological phenomena such as amyloid toxicity and prion strains. The approach presented here will also facilitate the use of AFM for high-resolution structural studies and integrative structural biology analysis of single molecular assemblies

    A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. II. Numeric Code and Tests

    Full text link
    Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (1990) model. The forward-fitting tests demonstrate: (i) a satisfactory convergence behavior (with typical misalignment angles of μ≈1∘−10∘\mu \approx 1^\circ-10^\circ), (ii) relatively fast computation times (from seconds to a few minutes), and (iii) the high fidelity of retrieved force-free α\alpha-parameters (αfit/αmodel≈0.9−1.0\alpha_{\rm fit}/\alpha_{\rm model} \approx 0.9-1.0 for simulations and αfit/αmodel≈0.7±0.3\alpha_{\rm fit}/\alpha_{\rm model} \approx 0.7\pm0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-forcefree magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing {\sl nonlinear force-free field (NLFFF)} codes based on photospheric magnetograms without coronal constraints.Comment: Solar PHysics, (in press), 25 pages, 11 figure

    Signatures of the charge density wave collective mode in the infrared optical response of VSe<sub>2</sub>

    Get PDF
    We present a detailed study of the bulk electronic structure of high quality VSe2_{2} single crystals using optical spectroscopy. Upon entering the charge density wave phase below the critical temperature of 112 K, the optical conductivity of VSe2_2 undergoes a significant rearrangement. A Drude response present above the critical temperature is suppressed while a new interband transition appears around 0.07\,eV. From our analysis, we estimate that part of the spectral weight of the Drude response is transferred to a collective mode of the CDW phase. The remaining normal state charge dynamics appears to become strongly damped by interactions with the lattice as evidenced by a mass enhancement factor m∗^{*}/m≈\approx3. In addition to the changes taking place in the electronic structure, we observe the emergence of infrared active phonons below the critical temperature associated with the 4a x 4a lattice reconstruction

    Comparing Discharge Estimates Made via the BAM Algorithm in High-Order Arctic Rivers Derived Solely From Optical CubeSat, Landsat, and Sentinel-2 Data

    Get PDF
    Conventional satellite platforms are limited in their ability to monitor rivers at fine spatial and temporal scales: suffering from unavoidable trade-offs between spatial and temporal resolutions. CubeSat constellations, however, can provide global data at high spatial and temporal resolutions, albeit with reduced spectral information. This study provides a first assessment of using CubeSat data for river discharge estimation in both gauged and ungauged settings. Discharge was estimated for 11 Arctic rivers with sizes ranging from 16 to >1,000 m wide using the Bayesian at-many-stations hydraulic geometry-Manning algorithm (BAM). BAM-at-many-stations hydraulic geometry solves for hydraulic geometry parameters to estimate flow and requires only river widths as input. Widths were retrieved from Landsat 8 and Sentinel-2 data sets and a CubeSat (the Planet company) data set, as well as their fusions. Results show satellite data fusion improves discharge estimation for both large (>100 m wide) and medium (40–100 m wide) rivers by increasing the number of days with a discharge estimation by a factor of 2–6 without reducing accuracy. Narrow rivers (<40 m wide) are too small for Landsat and Sentinel-2 data sets, and their discharge is also not well estimated using CubeSat data alone, likely because the four-band sensor cannot resolve water surfaces accurately enough. BAM technique outperforms space-based rating curves when gauge data are available, and its accuracy is acceptable when no gauge data are present (instead relying on global reanalysis for discharge priors). Ultimately, we conclude that the data fusion presented here is a viable approach toward improving discharge estimates in the Arctic, even in ungauged basins

    Fermionic Casimir effect with helix boundary condition

    Full text link
    In this paper, we consider the fermionic Casimir effect under a new type of space-time topology using the concept of quotient topology. The relation between the new topology and that in Ref. \cite{Feng,Zhai3} is something like that between a M\"obius strip and a cylindric. We obtain the exact results of the Casimir energy and force for the massless and massive Dirac fields in the (D+1D+1)-dimensional space-time. For both massless and massive cases, there is a Z2Z_2 symmetry for the Casimir energy. To see the effect of the mass, we compare the result with that of the massless one and we found that the Casimir force approaches the result of the force in the massless case when the mass tends to zero and vanishes when the mass tends to infinity.Comment: 7 pages, 4 figures, published in Eur. Phys. J.

    Streamer Wave Events Observed in Solar Cycle 23

    Full text link
    In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, 8 candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs ejecta are characterized by a high speed and a wide angular span, and the CME-streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events. We also conduct a further analysis on one specific streamer wave event on 5 June 2003. The heliocentric distances of 4 wave troughs/crests at various exposure times are determined; they are then used to deduce the wave properties like period, wavelength, and phase speeds. It is found that both the period and wavelength increase gradually with the wave propagation along the streamer plasma sheet, and the phase speed of the preceding wave is generally faster than that of the trailing ones. The associated coronal seismological study yields the radial profiles of the Alfv\'en speed and magnetic field strength in the region surrounding the streamer plasma sheet. Both quantities show a general declining trend with time. This is interpreted as an observational manifestation of the recovering process of the CME-disturbed corona. It is also found that the Alfv\'enic critical point is at about 10 R⊙_\odot where the flow speed, which equals the Alfv\'en speed, is ∼\sim 200 km s−1^{-1}
    • …
    corecore