3,413 research outputs found
Correlated Gaussian method for dilute bosonic systems
The weakly interacting trapped Bose gases have been customarily described
using the mean-field approximation in the form of the Gross-Pitaevskii
equation. The mean-field approximation, however, has certain limitations, in
particular it can not describe correlations between particles. We introduce
here an alternative variational approach, based on the correlated Gaussian
method, which in its simplest form is as fast and simple as the mean-field
approximation, but which allows successive improvements of the trial
wave-function by including correlations between particles.Comment: 9 pages, Workshop on Nuclei and Mesoscopic Physics, NSCL MSU, 200
Experiments on Passive Hypervelocity Boundary-Layer Control Using an Ultrasonically Absorptive Surface
Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface to damp the second mode (Mack mode). Boundary-layer transition experiments were performed on a sharp 5.06-deg half-angle round cone at zero angle of attack in the T5 Hypervelocity Shock Tunnel to test this concept. The cone was constructed with a smooth surface around half the cone circumference (to serve as a control) and an acoustically absorptive porous surface on the other half. Test gases investigated included nitrogen and carbon dioxide at Mâ â 5 with specific reservoir enthalpy ranging from 1.3 to 13.0 MJ/kg and reservoir pressure ranging from 9.0 to 50.0 MPa. Comparisons were performed to ensure that previous results obtained in similar experiments (on a regular smooth surface) were reproduced, and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the pore size was significantly smaller than the viscous length scale
alpha particle momentum distributions from 12C decaying resonances
The computed particle momentum distributions from the decay of
low-lying C resonances are shown. The wave function of the decaying
fragments is computed by means of the complex scaled hyperspherical adiabatic
expansion method. The large-distance part of the wave functions is crucial and
has to be accurately calculated. We discuss energy distributions, angular
distributions and Dalitz plots for the , and states of
C.Comment: 6 pages, 4 figures. Proceedings of the SOTANCP2008 conference held in
Strasbourg in May 200
Three-body Thomas-Ehrman shifts of analog states of Ne and N
The lowest-lying states of the Borromean nucleus Ne (O+ +
) and its mirror nucleus N (N+ + ) are compared by using
the hyperspheric adiabatic expansion. Three-body resonances are computed by use
of the complex scaling method. The measured size of O and the low-lying
resonances of F (O+) are first used as constraints to
determine both central and spin-dependent two-body interactions. The
interaction obtained reproduces relatively accurately both experimental
three-body spectra. The Thomas-Ehrman shifts, involving excitation energy
differences, are computed and found to be less than 3% of the total Coulomb
energy shift for all states.Comment: 9 pages, 3 postscript figures, revtex style. To be published in Phys.
Rev.
Three-Body Halos in Two Dimensions
A method to study weakly bound three-body quantum systems in two dimensions
is formulated in coordinate space for short-range potentials. Occurrences of
spatially extended structures (halos) are investigated. Borromean systems are
shown to exist in two dimensions for a certain class of potentials. An
extensive numerical investigation shows that a weakly bound two-body state
gives rise to two weakly bound three-body states, a reminiscence of the Efimov
effect in three dimensions. The properties of these two states in the weak
binding limit turn out to be universal.
PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st
Packet narrowing and quantum entanglement in photoionization and photodissociation
The narrowing of electron and ion wave packets in the process of
photoionization is investigated, with the electron-ion recoil fully taken into
account. Packet localization of this type is directly related to entanglement
in the joint quantum state of electron and ion, and to Einstein-Podolsky-Rosen
localization. Experimental observation of such packet-narrowing effects is
suggested via coincidence registration by two detectors, with a fixed position
of one and varying position of the other. A similar effect, typically with an
enhanced degree of entanglement, is shown to occur in the case of
photodissociation of molecules
Structure and three-body decay of Be resonances
The complex-rotated hyperspherical adiabatic method is used to study the
decay of low-lying Be resonances into one neutron and two
-particles. We investigate the six resonances above the break-up
threshold and below 6 MeV: , and . The
short-distance properties of each resonance are studied, and the different
angular momentum and parity configurations of the Be and He two-body
substructures are determined. We compute the branching ratio for sequential
decay via the Be ground state which qualitatively is consistent with
measurements. We extract the momentum distributions after decay directly into
the three-body continuum from the large-distance asymptotic structures. The
kinematically complete results are presented as Dalitz plots as well as
projections on given neutron and -energy. The distributions are
discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review
Anatomy of three-body decay II. Decay mechanism and resonance structure
We use the hyperspherical adiabatic expansion method to discuss the the two
mechanisms of sequential and direct three-body decay. Both short-range and
Coulomb interactions are included. Resonances are assumed initially populated
by a process independent of the subsequent decay. The lowest adiabatic
potentials describe the resonances rather accurately at distances smaller than
the outer turning point of the confining barrier. We illustrate with realistic
examples of nuclei from neutron (He) and proton (Ne) driplines as
well as excited states of beta-stable nuclei (C).Comment: To be published in Nuclear Physics
- âŠ