39 research outputs found

    Maternal Oral Bacterial Levels Predict Early Childhood Caries Development

    Get PDF
    Objective: To calculate the association of maternal salivary bacterial challenge (mutans streptococci [MS] and lactobacilli [LB]) from pregnancy through 24 months’ postpartum with child caries incidence (≥1 cavitated or restored teeth) at 36 months. Materials & Methods: Dental, salivary bacterial, sociodemographic, and behavioral measures were collected at three- to six-month intervals from a birth cohort of low-income Hispanic mother-child dyads (N = 243). We calculated the relative child caries incidence, adjusted for confounding, following higher maternal challenge of MS (>4500 colony-forming units per milliliter of saliva [CFU/mL]) and LB (>50 CFU/mL) based on multivariable models. Results: Salivary MS and LB levels were greater among mothers of caries-affected children versus caries-free children. Mothers with higher salivary MS challenge were more likely to have MS-positive children (>0 CFU/mL), but maternal LB challenge was not a statistically significant predictor of child LB-positive status. Adjusting for sociodemographics, feeding and care practices, and maternal dental status, higher maternal salivary challenge of both MS and LB over the study period predicted nearly double the child caries incidence versus lower MS and LB (cumulative incidence ratio: 1.9; 95% confidence interval: 1.1, 3.8). Conclusion: Maternal salivary bacterial challenge not only is associated with oral infection among children but also predicts increased early childhood caries occurrence

    Strategic Protein Target Analysis for Developing Drugs to Stop Dental Caries

    No full text
    Dental caries is the most common disease to cause irreversible damage in humans. Several therapeutic agents are available to treat or prevent dental caries, but none besides fluoride has significantly influenced the disease burden globally. Etiologic mechanisms of the mutans group streptococci and specific Lactobacillus species have been characterized to various degrees of detail, from identification of physiologic processes to specific proteins. Here, we analyze the entire Streptococcus mutans proteome for potential drug targets by investigating their uniqueness with respect to non-cariogenic dental plaque bacteria, quality of protein structure models, and the likelihood of finding a drug for the active site. Our results suggest specific targets for rational drug discovery, including 15 known virulence factors, 16 proteins for which crystallographic structures are available, and 84 previously uncharacterized proteins, with various levels of similarity to homologs in dental plaque bacteria. This analysis provides a map to streamline the process of clinical development of effective multispecies pharmacologic interventions for dental caries
    corecore