19 research outputs found

    Immunolocalization of cell wall polymers in grapevine (Vitis vinifera) internodes under nitrogen, phosphorus or sulfur deficiency

    Get PDF
    Abstract The impact on cell wall (CW) of the deficiency in nitrogen (–N), phosphorus (–P) or sulphur (–S), known to impair essential metabolic pathways, was investigated in the economically important fruit species Vitis vinifera L. Using cuttings as an experimental model a reduction in total internode number and altered xylem shape was observed. Under –N an increased internode length was also seen. CW composition, visualised after staining with calcofluor white, Toluidine blue and ruthenium red, showed decreased cellulose in all stresses and increased pectin content in recently formed internodes under –N compared to the control. Using CW-epitope specific monoclonal antibodies (mAbs), lower amounts of extensins incorporated in the wall were also observed under –N and –P conditions. Conversely, increased pectins with a low degree of methyl-esterification and richer in long linear 1,5-arabinan rhamnogalacturonan-I (RG-I) side chains were observed under –N and –P in mature internodes which, in the former condition, were able to form dimeric association through calcium ions. –N was the only condition in which 1,5-arabinan branched RG- content was not altered, as –P and –S older internodes showed, respectively, lower and higher amounts of this polymer. Higher xyloglucan content in older internodes was also observed under –N. The results suggest that impairments of specific CW components led to changes in the deposition of other polymers to promote stiffening of the CW. The unchanged extensin amount observed under –S may contribute to attenuating the effects on the CW integrity caused by this stress. Our work showed that, in organized V. vinifera tissues, modifications in a given CW component can be compensated by synthesis of different polymers and/or alternative linking between polymers. The results also pinpoint different strategies at the CW level to overcome mineral stress depending on how essential they are to cell growth and plant development

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior

    Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow

    No full text
    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and 15N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2–3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production

    Insights into nitrogen allocation and recycling from nitrogen elemental analysis and 15N isotope labelling in 14 genotypes of willow

    No full text
    Minimizing nitrogen (N) fertilization inputs during cultivation is essential for sustainable production of bioenergy and biofuels. The biomass crop willow (Salix spp.) is considered to have low N fertilizer requirements due to efficient recycling of nutrients during the perennial cycle. To investigate how successfully different willow genotypes assimilate and allocate N during growth, and remobilize and consequently recycle N before the onset of winter dormancy, N allocation and N remobilization (to and between different organs) were examined in 14 genotypes of a genetic family using elemental analysis and 15N as a label. Cuttings were established in pots in April and sampled in June, August and at onset of senescence in October. Biomass yield of the trees correlated well with yields recorded in the field. Genotype-specific variation was observed for all traits measured and general trends spanning these sampling points were identified when trees were grouped by biomass yield. Nitrogen reserves in the cutting fuelled the entirety of the canopy establishment, yet earlier cessation of this dependency was linked to higher biomass yields. The stem was found to be the major N reserve by autumn, which constitutes a major source of N loss at harvest, typically every 2–3 years. These data contribute to understanding N remobilization in short rotation coppice willow and to the identification of traits that could potentially be selected for in breeding programmes to further improve the sustainability of biomass production

    High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways.

    No full text
    Previous studies indicated that high nitrogen fertilization may impact secondary xylem development and alter fibre anatomy and composition. The resulting wood shares some resemblance with tension wood, which has much thicker cell walls than normal wood due to the deposition of an additional layer known as the G-layer. This report compares the short-term effects of high nitrogen fertilization and tree leaning to induce tension wood, either alone or in combination, upon wood formation in young trees of Populus trichocarpa (Torr. and Gray) × P. deltoides Bartr. ex Marsh. Fibre anatomy, chemical composition and transcript profiles were examined in newly formed secondary xylem. Each of the treatments resulted in thicker cell walls relative to the controls. High nitrogen and tree leaning had overlapping effects on chemical composition based on Fourier transform infrared analysis, specifically indicating that secondary cell wall composition was shifted in favour of cellulose and hemicelluloses relative to lignin content. In contrast, the high-nitrogen trees had shorter fibres, whilst the leaning trees had longer fibres that the controls. Microarray transcript profiling carried out after 28 days of treatment identified 180 transcripts that accumulated differentially in one or more treatments. Only 10% of differentially expressed transcripts were affected in all treatments relative to the controls. Several of the affected transcripts were related to carbohydrate metabolism, secondary cell wall formation, nitrogen metabolism and osmotic stress. RT-qPCR analyses at 1, 7 and 28 days showed that several transcripts followed very different accumulation profiles in terms of rate and level of accumulation, depending on the treatment. Our findings suggest that high nitrogen fertilization and tension wood induction elicit largely distinct and molecular pathways with partial overlap. When combined, the two types of environmental cue yielded additive effects

    Nitrogen fertilization has differential effects on N allocation and lignin in two Populus species with contrasting ecology

    Get PDF
    Black cottonwood (BC, Populus trichocarpa) and hybrid aspen (HA, P. tremula 9 tremuloides) differ in their ecology of being adapted to wet and drier conditions as riparian and early successional forest species, respectively. We tested the hypothesis that these ecological differences were reflected in higher nitrogen (N) use efficiency in HA than in BC and that HA would allocate more resources belowground than BC in the presence of high and low N availability. We expected that responses of wood properties to elevated N would be more pronounced in the species with higher wood formation in response to N supply. HA showed higher belowground biomass partitioning than BC in the presence of low (0.2 mM) and high (2 mM) N supply, but in contrast to our expectation wholeplant nitrogen use efficiency and the stem carbon-tonitrogen balance were lower than in BC. In response to elevated N, HA exhibited stronger stimulation of biomass production than BC, especially of the stem, which showed significant increases in biomass and volume but decreases in density. Lignification, especially the production of guaiacyl (G)-compared to syringyl (S)-lignin, was delayed in HA compared with BC wood. Since G lignin leads to stronger crosslinking than S lignin, its delayed formation may have enabled stronger expansion and higher volume increment of HA than of BC stems. Our results suggest that BC, a poplar species adapted to fluctuating N supply, is less responsive to differences in N availability than aspen that occurs in low N environments.peerReviewe
    corecore