7 research outputs found

    On the status and mechanisms of coastal erosion in Marawila Beach, Sri Lanka

    Get PDF
    Coastal erosion remains a problem in many developing countries because of a limited understating of erosion mechanisms and management. Sri Lanka is one of the countries that recognized coastal erosion management as a governmental responsibility, in 1984. Nevertheless, erosion mechanisms have not yet been fully understood. We investigate the status and mechanisms of coastal erosion using empirically collected data and various techniques, such as Geographic Information System analysis of satellite images, drone mapping, bathymetric surveys, hindcasting of wind-induced wave climate, questionnaires, and semi-structured interview surveys. We identified wave climate change, reduction in river sand supply, interruptions from previous erosion management measures, and offshore sand mining as potential causes of erosion considering sediment flux and rates of erosion. Erosion of Marawila Beach began during 2005–2010 and has been continuing ever since, due to a lack of integration in the beach and the entire sediment system. It is necessary to identify the long-term, large-scale changes in the sediment system through data collection. This study highlights the importance of an integrated coastal erosion management plan and could facilitate better coastal erosion management in Sri Lanka, as well as in other developing countries

    Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey

    No full text
    WOS: 000527535700001This study was performed along the shorelines of Lake Salda in Turkey during the elapsed period from 1975 to 2019 in order to detect shoreline changes. Within this framework, geographic information system, digital shoreline analysis system, Modified Normalized Difference Water Index, and multi-temporal satellite images were utilized. The measurement of shoreline displacement was mainly divided into six analysis regions. In digital shoreline analysis system, several statistical parameters such as end point rate, linear regression rate, shoreline change envelope, and net shoreline movement were computed to measure the rates of shoreline displacement in terms of erosion and accretion. The maximum shoreline change between 1975 and 2019 was determined as 556.45 m by shoreline change envelope parameter. The maximum shoreline change was 16.35 m/year by end point rate parameter and 12.91 m/year by linear regression rate parameter. While erosion has been observed in 3rd, 4th and 6th segments, accretion has been observed in other segments. When all the transects were taken into consideration, an accretion observed. The results indicate that there is a decrease in area of the lake. Experiment results show that integrated use of multi-temporal satellite images and statistical parameters are very effective and useful for shoreline change analysis. It is thought that the structures such as irrigation pond and dam that are built on the streams that recharge the lake and average rainfall and average temperature conditions are the main reasons of the fluctuations and changes in the shorelines
    corecore