17 research outputs found

    Heterologous Expression and Maturation of an NADP-Dependent [NiFe]-Hydrogenase: A Key Enzyme in Biofuel Production

    Get PDF
    Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins

    Role of Operon aaoSo-mutT in Antioxidant Defense in Streptococcus oligofermentans

    Get PDF
    Previously, we have found that an insertional inactivation of aaoSo, a gene encoding L-amino acid oxidase (LAAO), causes marked repression of the growth of Streptococcus oligofermentans. Here, we found that aaoSo and mutT, a homolog of pyrophosphohydrolase gene of Escherichia coli, constituted an operon. Deletion of either gene did not impair the growth of S. oligofermentans, but double deletion of both aaoSo and mutT was lethal. Quantitative PCR showed that the transcript abundance of mutT was reduced for 13-fold in the aaoSo insertional mutant, indicating that gene polarity derived from the inactivation of aaoSo attenuated the expression of mutT. Enzymatic assays were conducted to determine the biochemical functions of LAAO and MutT of S. oligofermentans. The results indicated that LAAO functioned as an aminoacetone oxidase [47.75 nmol H2O2 (min·mg protein)–1]; and MutT showed the pyrophosphohydrolase activity, which removed mutagens such as 8-oxo-dGTP. Like paraquat, aaoSo mutations increased the expression of SOD, and addition of aminoacetone (final concentration, 5 mM) decreased the mutant’s growth by 11%, indicating that the aaoSo mutants are under ROS stress. HPLC did reveal elevated levels of cytoplasmic aminoacetone in both the deletion and insertional gene mutants of aaoSo. Electron spin resonance spectroscopy showed increased hydroxyl radicals in both types of aaoSo mutant. This demonstrated that inactivation of aaoSo caused the elevation of the prooxidant aminoacetone, resulting the cellular ROS stress. Our study indicates that the presence of both LAAO and MutT can prevent endogenous metabolites-generated ROS and mutagens. In this way, we were able to determine the role of the aaoSo-mutT operon in antioxidant defense in S. oligofermentans

    How sulphate-reducing microorganisms cope with stress: lessons from systems biology

    Get PDF
    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery

    Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    No full text
    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done
    corecore