26 research outputs found

    Anomaly/Transport in an Ideal Weyl gas

    Full text link
    We study some of the transport processes which are specific to an ideal gas of relativistic Weyl fermions and relate the corresponding transport coefficients to various anomaly coefficients of the system. We propose that these transport processes can be thought of as arising from the continuous injection of chiral states and their subsequent adiabatic flow driven by vorticity. This in turn leads to an elegant expression relating the anomaly induced transport coefficients to the anomaly polynomial of the Ideal Weyl gas.Comment: 35 pages, JHEP forma

    High field level crossing studies on spin dimers in the low dimensional quantum spin system Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T=Ni,Co,Fe,Mn

    Full text link
    In this paper we demonstrate the application of high magnetic fields to study the magnetic properties of low dimensional spin systems. We present a case study on the series of 2-leg spin-ladder compounds Na2_2T2_2(C2_2O4_4)3_3(H2_2O)2_2 with T = Ni, Co, Fe and Mn. In all compounds the transition metal is in the T2+T^{2+} high spin configuation. The localized spin varies from S=1 to 3/2, 2 and 5/2 within this series. The magnetic properties were examined experimentally by magnetic susceptibility, pulsed high field magnetization and specific heat measurements. The data are analysed using a spin hamiltonian description. Although the transition metal ions form structurally a 2-leg ladder, an isolated dimer model consistently describes the observations very well. This behaviour can be understood in terms of the different coordination and superexchange angles of the oxalate ligands along the rungs and legs of the 2-leg spin ladder. All compounds exhibit magnetic field driven ground state changes which at very low temperatures lead to a multistep behaviour in the magnetization curves. In the Co and Fe compounds a strong axial anisotropy induced by the orbital magnetism leads to a nearly degenerate ground state and a strongly reduced critical field. We find a monotonous decrease of the intradimer magnetic exchange if the spin quantum number is increased

    Electron quantum metamaterials in van der Waals heterostructures

    Full text link
    In recent decades, scientists have developed the means to engineer synthetic periodic arrays with feature sizes below the wavelength of light. When such features are appropriately structured, electromagnetic radiation can be manipulated in unusual ways, resulting in optical metamaterials whose function is directly controlled through nanoscale structure. Nature, too, has adopted such techniques -- for example in the unique coloring of butterfly wings -- to manipulate photons as they propagate through nanoscale periodic assemblies. In this Perspective, we highlight the intriguing potential of designer sub-electron wavelength (as well as wavelength-scale) structuring of electronic matter, which affords a new range of synthetic quantum metamaterials with unconventional responses. Driven by experimental developments in stacking atomically layered heterostructures -- e.g., mechanical pick-up/transfer assembly -- atomic scale registrations and structures can be readily tuned over distances smaller than characteristic electronic length-scales (such as electron wavelength, screening length, and electron mean free path). Yet electronic metamaterials promise far richer categories of behavior than those found in conventional optical metamaterial technologies. This is because unlike photons that scarcely interact with each other, electrons in subwavelength structured metamaterials are charged, and strongly interact. As a result, an enormous variety of emergent phenomena can be expected, and radically new classes of interacting quantum metamaterials designed

    Fermi liquids and Luttinger liquids

    No full text
    In these lecture notes, the basic physics of Fermi liquids and Luttinger liquids is presented. Fermi liquids are discussed both from a phenomenological viewpoint, in relation to microscopic approaches, and as renormalization group fixed points. Luttinger liquids are introduced using the bosonization formalism, and their essential differences with Fermi liquids are pointed out. Applications to transport effects, the effect of disorder, quantum spin chains, and spin ladders, both insulating and metallic, are given
    corecore