69 research outputs found
Agreement and utility of coded primary and secondary care data for long-term follow-up of clinical trial outcomes
Background: Whilst interest in efficient trial design has grown with the use of electronic health records (EHRs) to collect trial outcomes, practical challenges remain. Commonly raised concerns often revolve around data availability, data quality and issues with data validation. This study aimed to assess the agreement between data collected on clinical trial participants from different sources to provide empirical evidence on the utility of EHRs for follow-up in randomised controlled trials (RCTs). Methods: This retrospective, participant-level data utility comparison study was undertaken using data collected as part of a UK primary care-based, randomised controlled trial (OPTiMISE). The primary outcome measure was the recording of all-cause hospitalisation or mortality within 3 years post-randomisation and was assessed across (1) Coded primary care data; (2) Coded-plus-free-text primary care data; and (3) Coded secondary care and mortality data. Agreement levels across data sources were assessed using Fleiss’ Kappa (K). Kappa statistics were interpreted using an established framework, categorising agreement strength as follows: <0 (poor), 0.00–0.20 (slight), 0.21–0.40 (fair), 0.41–0.60 (moderate), 0.61–0.80 (substantial), and 0.81–1.00 (almost perfect) agreement. The impact of using different data sources to determine trial outcomes was assessed by replicating the trial’s original analyses. Results: Almost perfect agreement was observed for mortality outcome across the three data sources (K = 0.94, 95%CI 0.91–0.98). Fair agreement (weak consistency) was observed for hospitalisation outcomes, including all-cause hospitalisation or mortality (K = 0.35, 95%CI 0.28–0.42), emergency hospitalisation (K = 0.39, 95%CI 0.33–0.46), and hospitalisation or mortality due to cardiovascular disease (K = 0.32, 95%CI 0.19–0.45). The overall trial results remained consistent across data sources for the primary outcome, albeit with varying precision. Conclusion: Significant discrepancies according to data sources were observed in recording of secondary care outcomes. Investigators should be cautious when choosing which data source(s) to use to measure outcomes in trials. Future work on linking participant-level data across healthcare settings should consider the variations in diagnostic coding practices. Standardised definitions for outcome measures when using healthcare systems data and using data from different data sources for cross-checking and verification should be encouraged
Predicting hypotension, syncope, and fracture risk in patients indicated for antihypertensive treatment: the STRATIFY models
Antihypertensives are associated with increased risk of syncope, hypotension, and fractures, but the highest-risk individuals are unclear. This study aimed to develop and validate three models to predict these outcomes in patients with an indication for antihypertensive treatment. A cohort study was conducted using data from Clinical Practice Research Datalink (CPRD). Patients aged 40+ with systolic blood pressure 130-179 mmHg were included. Outcomes were first hypotension, syncope, or fracture leading to hospitalization or death within 10 years. Models were derived from CPRD GOLD data (n = 1,773,224) and validated with CPRD Aurum data (n = 3,805,366). Each model had 31-37 predictors. Validation demonstrated strong discriminative ability (10-year C-statistic: hypotension 0.824; syncope 0.819; fracture 0.790), with close agreement between predicted and observed risks for the hypotension and syncope models. Some underprediction was observed for the fracture model. These models could be used to help reassure patients about the relatively low risk of harm from antihypertensive treatment, or identify the small number of individuals with a higher risk where additional monitoring may be indicated
Effect of antihypertensive deprescribing on hospitalisation and mortality: long-term follow-up of the OPTiMISE randomised controlled trial
Background: Deprescribing of antihypertensive medications is recommended for some older patients with low blood pressure and frailty. The OPTiMISE trial showed that this deprescribing can be achieved with no differences in blood pressure control at 3 months compared with usual care. We aimed to examine effects of deprescribing on longer-term hospitalisation and mortality.
Methods: This randomised controlled trial enrolled participants from 69 general practices across central and southern England. Participants aged 80 years or older, with systolic blood pressure less than 150 mm Hg and who were receiving two or more antihypertensive medications, were randomly assigned (1:1) to antihypertensive medication reduction (removal of one antihypertensive) or usual care. General practitioners and participants were aware of the treatment allocation following randomisation but individuals responsible for analysing the data were masked to the treatment allocation throughout the study. Participants were followed up via their primary and secondary care electronic health records at least 3 years after randomisation. The primary outcome was time to all-cause hospitalisation or mortality. Intention-to-treat analyses were done using Cox regression modelling. A per-protocol analysis of the primary outcome was also done, excluding participants from the intervention group who did not reduce treatment or who had medication reinstated during the initial trial 12-week follow-up period. This study is registered with the European Union Drug Regulating Authorities Clinical Trials Database (EudraCT2016-004236-38) and the ISRCTN Registry (ISRCTN97503221).
Findings: Between March 20, 2017, and Sept 30, 2018, a total of 569 participants were randomly assigned. Of these, 564 (99%; intervention=280; control=284) were followed up for a median of 4·0 years (IQR 3·7–4·3). Participants had a mean age of 84·8 years (SD 3·4) at baseline and 273 (48%) were women. Medication reduction was sustained in 109 participants at follow-up (51% of the 213 participants alive in the intervention group). Participants in the intervention group had a larger reduction in antihypertensives than the control group (adjusted mean difference –0·35 drugs [95% CI –0·52 to –0·18]). Overall, 202 (72%) participants in the intervention group and 218 (77%) participants in the control group experienced hospitalisation or mortality during follow-up (adjusted hazard ratio [aHR] 0·93 [95% CI 0·76 to 1·12]). There was some evidence that the proportion of participants experiencing the primary outcome in the per-protocol population was lower in the intervention group (aHR 0·80 [0·64 to 1·00]).
Interpretation: Half of participants sustained medication reduction with no evidence of an increase in all-cause hospitalisation or mortality. These findings suggest that an antihypertensive deprescribing intervention might be safe for people aged 80 years or older with controlled blood pressure taking two or more antihypertensives
Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions
Three spikelets are formed at each rachis node of the cultivated barley (Hordeum vulgare ssp. vulgare) spike. In two-rowed barley, the central one is fertile and the two lateral ones are sterile, whereas in the six-rowed type, all three are fertile. This characteristic is determined by the allelic constitution at the six-rowed spike 1 (vrs1) locus on the long arm of chromosome 2H, with the recessive allele (vrs1) being responsible for the six-rowed phenotype. The Vrs1 (HvHox1) gene encodes a homeodomain-leucine zipper (HD-Zip) transcription factor. Here, we show that the Vrs1 gene evolved in the Poaceae via a duplication, with a second copy of the gene, HvHox2, present on the short arm of chromosome 2H. Micro-collinearity and polypeptide sequences were both well conserved between HvHox2 and its Poaceae orthologs, but Vrs1 is unique to the barley tribe. The Vrs1 gene product lacks a motif which is conserved among the HvHox2 orthologs. A phylogenetic analysis demonstrated that Vrs1 and HvHox2 must have diverged after the separation of Brachypodium distachyon from the Pooideae and suggests that Vrs1 arose following the duplication of HvHox2, and acquired its new function during the evolution of the barley tribe. HvHox2 was expressed in all organs examined but Vrs1 was predominantly expressed in immature inflorescence
The Arabidopsis thaliana Homeobox Gene ATHB12 Is Involved in Symptom Development Caused by Geminivirus Infection
BACKGROUND: Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV). Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. METHODOLOGY/PRINCIPAL FINDINGS: Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were induced. CONCLUSIONS/SIGNIFICANCE: These results suggest that ATHB7 and ATHB12 may play an important role in the activation of the abnormal cell division associated with symptom development during geminivirus infection
Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize
Background: Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings: In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related ciselements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution
Overexpression of OsHox32 Results in Pleiotropic Effects on Plant Type Architecture and Leaf Development in Rice
Antimalarial Properties of Isoquinoline Derivative from<i>Streptomyces hygroscopicus</i>subsp. Hygroscopicus: An In Silico Approach
Malaria is one of the life-threatening diseases in the world. The spread of resistance to antimalarial drugs is a major challenge, and resistance to artemisinin has been reported in the Southeast Asian region. In the previous study, the active compound ofStreptomyces hygroscopicussubsp. Hygroscopicus (S.hygroscopicus), eponemycin, has been shown to have antimalarial effects. To further analyze the effects of other active compounds on thePlasmodiumparasite, identifying and analyzing the effectiveness of compounds contained inS.hygroscopicusthrough instrumentation of liquid chromatography/mass spectrometry (LC/MS) and in silico studies were very useful. This study aimed at identifying other derivative compounds fromS.hygroscopicusand screening the antimalarial activity of the compound by assessing the binding affinity, pharmacokinetic profile, and bond interaction. The derivative compounds were identified using LC/MS. Protein targets for derivative compounds were found through literature studies, and the results of identification of compounds and protein targets were reconstructed into three-dimensional models. Prediction of pharmacokinetic profiles was carried out using Swiss ADME. Screening of protein targets for the derivative compound was carried out using the reverse molecular docking method. Analyzing bond interaction was done by LigPlot. One compound fromS.hygroscopicus, i.e., 6,7-dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione, was successfully identified using LC/MS. This compound was an isoquinoline derivative compound. Through literature studies with inclusion criteria, thirteen protein targets were obtained for reverse molecular docking. This isoquinoline derivative had the potential to bind to each protein target. The pharmacokinetic profile showed that this compound had the drug-likeness criteria.Conclusion. 6,7-Dinitro-2-[1, 2, 4]triazole-4-yl-benzo[de]isoquinoline-1,3-dione has antimalarial activity as shown by reverse molecular docking studies and pharmacokinetic profiles. The best inhibitory ability of compounds based on bond affinity is with adenylosuccinate synthetase.</jats:p
Transcriptional regulation of secondary wall formation controlled by NAC domain proteins
- …
